CS-E4530 Computational Complexity Theory

Lecture 12: Randomised Computation
Aalto University
School of Science
Department of Computer Science
Spring 2019

Agenda

- Modelling randomised computation
- Probabilistic complexity classes
- Example: Polynomial identity testing
- Error reduction

Solving Hard Problems: Randomness

- There are intractable problems that we don't know how to solve in polynomial time
- How to deal with such problems in practice?
- One possible approach: Allow random choices
- Basic idea: allow the program to flip coins
- When does this this help? (Or does it help at all?)

Randomised Computation

- Real world contains random phenomena
- Randomness is not captured by deterministic Turing machines
- What happens if we add randomness to Turing machines?
- Randomness is widely used in computation, e.g. simulations
- Random algorithms can be simpler and more efficient for some problems
- However, in many (most? all?) cases it turns out that randomness can be eliminated by some derandomisation technique

Probabilistic Turing Machines

- A probabilistic Turing machine M is a Turing machine with following special features:
- M has two transition functions δ_{1} and δ_{2}
- M always outputs 1 (accept) or 0 (reject)
- An execution of a probabilistic Turing machine M :
- Start from the starting state as normal
- At each step, apply δ_{1} with probability $1 / 2$ and δ_{2} with probability $1 / 2$
- The output $M(x) \in\{0,1\}$ is a random variable

Probabilistic Turing Machines

Definition

We say that a probabilistic Turing machine M runs in time $T(n)$ if M halts on input $x \in\{0,1\}^{*}$ in $T(|x|)$ steps regardless of the random choices.

- If PTM runs in time t, there are 2^{t} possible branches
- Each branch is selected with probability $1 / 2^{t}$
- $\operatorname{Pr}[M(x)=1]$ is the fraction of branches accepting

Randomised Acceptance and Errors

- For probabilistic Turing machines, we allow machines to output wrong answer for some random choices
- Depending on the exact formulation, we get different complexity classes
- Possible options for resolving this:
- Allow false negatives, but no false positives
- Allow false positives, but no false negatives
- Allow both false negatives and false positives
- Don't allow errors, but require that the expected running time is bounded

RTIME and RP: One-sided error

Definition (Randomised time)

The class $\operatorname{RTIME}(T(n))$ is the set of languages L for which there exists a probabilistic Turing machine M and a constant $c>0$ such that M runs in time $c \cdot T(n)$, and

- for all $x \in L$, we have $\operatorname{Pr}[M(x)=1] \geq 2 / 3$, and
- for all $x \notin L$, we have $\operatorname{Pr}[M(x)=1]=0$.

Definition (Randomised polynomial time)

$$
\mathrm{RP}=\bigcup_{d=1}^{\infty} \operatorname{RTIME}\left(n^{d}\right)
$$

RP: Properties and Relationships

- RP algorithms are called Monte Carlo algorithms
- Complementary class: coRP
- Yes-instances: accepted always
- No-instances: rejected with probability $\geq 2 / 3$
- Relationships and completeness
- $P \subseteq R P \cap \operatorname{coRP}$
- $\mathrm{RP} \subseteq \mathrm{NP}$
- coRP \subseteq coNP
- No known complete problems for RP and coRP

Expected Running Time

Definition (Expected running time)

Let M be a probabilistic Turing Machine. Let $T_{M, x}$ be a random variable whose value is the running time of M on x. We say that M has expected running time $T(n)$ if $\mathrm{E}\left[T_{M, x}\right] \leq T(|x|)$ for all $x \in\{0,1\}^{*}$.

ZTIME and ZPP: Zero-sided error

Definition (zero-error probabilistic time)

The class $\mathrm{ZTIME}(T(n))$ is the set of languages L for which there exists a probabilistic Turing machine M with expected running time $T(n)$ such that whenever M halts on input $x \in\{0,1\}^{*}$, we have that $M(x)=1$ if and only if $x \in L$.

Definition (Zero-error probabilistic polynomial time)

$$
\mathrm{ZPP}=\bigcup_{d=1}^{\infty} \operatorname{ZTIME}\left(n^{d}\right)
$$

ZPP: Properties and Relationships

- ZPP algorithms are called Las Vegas algorithms
- $\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$
- Basic idea " \supseteq ": perform repeated runs of both the RP and the coRP algorithm until one of them gives a definitive answer
- Basic idea " \subseteq ": run ZPP algorithm for polynomial time, use default answer if the ZPP algorithm does not stop

BPTIME and BPP: Two-sided error

Definition (Bounded-error probabilistic time)

The class $\operatorname{BPTIME}(T(n))$ is the set of languages L for which there exists a probabilistic Turing machine M and a constant $c>0$ such that M runs in time $c \cdot T(n)$, and

- for all $x \in L$, we have $\operatorname{Pr}[M(x)=1] \geq 2 / 3$, and
- for all $x \notin L$, we have $\operatorname{Pr}[M(x)=0] \geq 2 / 3$.

Definition (Bounded-error probabilistic polynomial time)

$$
\mathrm{BPP}=\bigcup_{d=1}^{\infty} \operatorname{BPTIME}\left(n^{d}\right)
$$

BPP: Properties and Relationships

- Relationships and completeness
- RP $\subseteq B P P$
- coRP $\subseteq B P P$
- $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
- No known complete problems for BPP
- Proving separations for BPP seems difficult
- We don't even know if BPP $=$ NEXP!
- On the other hand, it is known that if NP $\subseteq B P P$, then $\mathrm{PH}=\Sigma_{2}^{p}$

Polynomial Identity Testing

- A polynomial is identically zero if and only if its monomial representation equals 0
- Example:

$$
\begin{aligned}
& -x y+(x-y)\left(x^{2}+y\right)+x^{2}(y-x)+y^{2} \\
= & -x y+x^{3}+x y-y x^{2}-y^{2}+x^{2} y-x^{3}+y^{2} \\
= & -x y+x y-x^{3}+x^{3}-y x^{2}+x^{2} y-y^{2}+y^{2}=0
\end{aligned}
$$

is identically zero

- Two polynomials, p and q over variables x_{1}, \ldots, x_{n}, are equal iff the polynomial $p-q$ is identically zero

Polynomial Identity Testing

- One can obtain a Monte Carlo algorithm for checking whether a polynomial is not identically zero by using the Schwartz-Zippel lemma:

Lemma (Schwartz-Zippel)

Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a multivariate polynomial with total degree $d \geq 0$ over a field \mathbb{F}. Assume that p is not identically zero. Let S be a finite subset of \mathbb{F} and let $r_{1}, r_{2}, \ldots, r_{n}$ be selected randomly from S. Then

$$
\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \leq d /|S| .
$$

- No deterministic polynomial time algorithm for this task is known

Perfect Matching

Definition (Perfect matching)

- Instance: Bipartite graph $B=(U, V, E)$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$, $V=\left\{v_{1}, \ldots, v_{n}\right\}, E \subseteq U \times V$.
- Question: Is there a set $E^{\prime} \subseteq E$ of n edges such that for any two distinct edges $(u, v),\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}, u \neq u^{\prime}$ and $v \neq v^{\prime}$ (i.e., is there a perfect matching)?
- A perfect matching can be seen as a permutation π of $1, \ldots, n$ such that $\left(u_{i}, v_{\pi(i)}\right) \in E$ for all $u_{i} \in U$

Example (perfect matchings as permutations)

$$
\begin{aligned}
& \pi_{1}(1)=1 \\
& \pi_{1}(2)=2 \\
& \pi_{1}(3)=3
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}(1)=1 \\
& \pi_{1}(2)=3 \\
& \pi_{1}(3)=2
\end{aligned}
$$

Perfect Matching

- Perfect matching is related to the determinant
- Given a graph G, construct an $n \times n$ matrix A^{G}, where the element $a_{i, j}$ is a variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and 0 otherwise.
- Determinant of A^{G} is

$$
\operatorname{det} A^{G}=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}
$$

where π ranges over permutations of n
Example (perfect matchings and determinants)

$$
A^{G}=\left(\begin{array}{ccc}
x_{1,1} & x_{1,2} & 0 \\
0 & x_{2,2} & x_{2,3} \\
0 & x_{3,2} & x_{3,3}
\end{array}\right) \quad \begin{aligned}
& \operatorname{det} A^{G}= \\
& x_{1,1} x_{2,2} x_{3,3}-x_{1,1} x_{2,3} x_{3,2}
\end{aligned}
$$

Perfect Matching

- Determinant of A^{G} tells us about the existence of a perfect matching
- Bipartite graph G has a perfect matching if and only if there is a term for which $a_{i, \pi(i)} \neq 0$ for all $i=1, \ldots, n$.
- Hence, G has a perfect matching if and only if $\operatorname{det} A^{G}$ is not identically 0 .

Example (perfect matchings and determinants)

$$
A^{G}=\left(\begin{array}{ccc}
x_{1,1} & x_{1,2} & 0 \\
0 & x_{2,2} & x_{2,3} \\
0 & x_{3,2} & x_{3,3}
\end{array}\right) \quad \begin{aligned}
& \operatorname{det} A^{G}= \\
& x_{1,1} x_{2,2} x_{3,3}-x_{1,1} x_{2,3} x_{3,2}
\end{aligned}
$$

Perfect Matching

- Testing whether $\operatorname{det} A^{G}$ is identically 0 for a symbolic matrix A^{G} containing variables can be done by using a randomised algorithm via Schwartz-Zippel lemma

Randomised algorithm for perfect matching

Given an $n \times n$ matrix $A^{G}\left(x_{1}, \ldots, x_{m}\right)$ with $m \leq n^{2}$ variables:

- Choose m random integers i_{1}, \ldots, i_{m} (between 0 and M)
- Compute $\operatorname{det} A^{G}\left(i_{1}, \ldots, i_{m}\right)$ (by Gaussian elimination)
- If $\operatorname{det} A^{G}\left(i_{1}, \ldots, i_{m}\right) \neq 0$, then return yes
- If $\operatorname{det} A^{G}\left(i_{1}, \ldots, i_{m}\right)=0$, then return no
- Accepts yes-instances with probability $1-n / M$
- Rejects no-instances always

BPP Error Reduction

Theorem

Let $L \subseteq\{0,1\}^{*}$ be a language, and assume that there is a polynomial-time PTM M such that for every $x \in\{0,1\}^{*}$, we have

$$
\operatorname{Pr}[M(x)=L(x)] \geq 1 / 2+|x|^{-c}
$$

for constant $c>1$. Then for every constant $d>0$, there is a polynomial-time $P T M M^{\prime}$ such that for every $x \in\{0,1\}^{*}$, we have

$$
\operatorname{Pr}\left[M^{\prime}(x)=L(x)\right] \geq 1-2^{-|x|^{d}}
$$

- Implies that $r=2 / 3$ in the definition of BPP can be replaced by any constant $r>1 / 2$. (In fact even by a function that approaches $1 / 2$ at most polynomially.)

BPP Error Reduction: Proof

- Machine M^{\prime} does the following on input $x \in\{0,1\}^{*}$:
- Run $M(x)$ for $k=8|x|^{2 c+d}$ times to obtain outputs $y_{1}, y_{2}, \ldots, y_{k}$
- Output majority of $y_{1}, y_{2}, \ldots, y_{k}$
- We need to show that probability of the wrong answer is exponentially small
- Define random variable X_{i} so that X_{i} is 0 if $y_{i}=L(x)$, and 1 otherwise
- $\sum_{i=1}^{k} X_{i}$ counts the number of wrong answers
- We want to prove that $\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq k / 2\right] \leq 1-2^{-|x|^{d}}$
- For this, we use the Chernoff bound

Chernoff Bound

Theorem (Chernoff bound)
Suppose that X_{1}, \ldots, X_{k} are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively, and consider their sum $X=\sum_{i=1}^{k} X_{i}$. Then for all $0 \leq \delta \leq 1$,

$$
\operatorname{Pr}[X \geq(1+\delta) p k] \leq e^{-\frac{\delta^{2}}{3} p k}
$$

BPP Error Reduction: Proof

- We now apply Chernoff bound to random variables X_{i} :
- Random variables X_{i} are independent
- $p=1 / 2-|x|^{-c}$
- We set $\delta=|x|^{-c} / 2$
- Then $(1+\delta) p k<k / 2$
- Thus $\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq k / 2\right] \leq \operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) p k\right]$
- By the Chernoff bound, we have

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) p k\right] \leq e^{-\frac{\delta^{2}}{3} p k} \leq 2^{-|x|^{d}}
$$

Error Reduction

- Error reduction for BPP can be used to prove BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
- Basic idea: since we can make acceptance probability exponentially small, there is a very small certificate for accepting or rejecting states
- Can be checked in Σ_{2}^{p}
- Need some non-trivial technical details
- Error reduction works also for RP and coRP
- Success probability $|x|^{-c}$ is enough
- Easier to prove, no need for Chernoff bound

Probabilistic and Quantum Computation

- Strong Church-Turing thesis: any physically realisable system can be simulated by a Turing machine with polynomial overhead
- Would require that BPP $=\mathrm{P}$
- This sounds surprising, but may well be the case (or not)
- What about quantum computation?
- Quantum polynomial time BQP
- Best known quantum algorithms beat best known randomised algorithms for some problems
- Known: BPP \subseteq BQP \subseteq PSPACE

Lecture 12: Summary

- Monte Carlo algorithms: RP and coRP
- Las Vegas algorithms: ZPP
- BPP
- Polynomial Identity Testing
- Error reduction

