

## **CS-E4530 Computational Complexity Theory**

#### Lecture 12: Randomised Computation

Aalto University School of Science Department of Computer Science

Spring 2019

# Agenda

- Modelling randomised computation
- Probabilistic complexity classes
- Example: Polynomial identity testing
- Error reduction



# Solving Hard Problems: Randomness

#### There are intractable problems that we don't know how to solve in polynomial time

How to deal with such problems in practice?

#### • One possible approach: Allow random choices

- Basic idea: allow the program to flip coins
- When does this this help? (Or does it help at all?)



## **Randomised Computation**

#### • Real world contains random phenomena

- Randomness is not captured by deterministic Turing machines
- What happens if we add randomness to Turing machines?
  - Randomness is widely used in computation, e.g. simulations
  - Random algorithms can be simpler and more efficient for some problems
  - However, in many (most? all?) cases it turns out that randomness can be eliminated by some *derandomisation technique*



# **Probabilistic Turing Machines**

• A *probabilistic Turing machine M* is a Turing machine with following special features:

- *M* has two *transition functions*  $\delta_1$  and  $\delta_2$
- M always outputs 1 (accept) or 0 (reject)

#### • An *execution* of a probabilistic Turing machine *M*:

- Start from the starting state as normal
- $\blacktriangleright$  At each step, apply  $\delta_1$  with probability 1/2 and  $\delta_2$  with probability 1/2
- The output  $M(x) \in \{0,1\}$  is a random variable



# **Probabilistic Turing Machines**

#### Definition

We say that a probabilistic Turing machine *M* runs in time T(n) if *M* halts on input  $x \in \{0, 1\}^*$  in T(|x|) steps regardless of the random choices.

- If PTM runs in time t, there are  $2^t$  possible branches
  - Each branch is selected with probability 1/2<sup>t</sup>
  - Pr[M(x) = 1] is the *fraction* of branches accepting



#### **Randomised Acceptance and Errors**

• For probabilistic Turing machines, we allow machines to output wrong answer for some random choices

 Depending on the exact formulation, we get different complexity classes

#### Possible options for resolving this:

- Allow false negatives, but no false positives
- Allow false positives, but no false negatives
- Allow both false negatives and false positives
- Don't allow errors, but require that the *expected running time* is bounded



#### RTIME and RP: One-sided error

#### Definition (Randomised time)

The class  $\mathsf{RTIME}(T(n))$  is the set of languages *L* for which there exists a probabilistic Turing machine *M* and a constant c > 0 such that *M* runs in time  $c \cdot T(n)$ , and

- for all  $x \in L$ , we have  $\Pr[M(x) = 1] \ge 2/3$ , and
- for all  $x \notin L$ , we have  $\Pr[M(x) = 1] = 0$ .

#### Definition (Randomised polynomial time)

$$\mathsf{RP} = \bigcup_{d=1}^\infty \mathsf{RTIME}(n^d)$$



# **RP:** Properties and Relationships

- RP algorithms are called *Monte Carlo* algorithms
- Complementary class: coRP
  - Yes-instances: accepted always
  - No-instances: rejected with probability  $\geq 2/3$
- Relationships and completeness
  - $P \subseteq RP \cap coRP$
  - $\mathsf{RP} \subseteq \mathsf{NP}$
  - $coRP \subseteq coNP$
  - No known complete problems for RP and coRP



# **Expected Running Time**

#### Definition (Expected running time)

Let *M* be a probabilistic Turing Machine. Let  $T_{M,x}$  be a random variable whose value is the running time of *M* on *x*. We say that *M* has *expected running time* T(n) if  $E[T_{M,x}] \leq T(|x|)$  for all  $x \in \{0,1\}^*$ .



## ZTIME and ZPP: Zero-sided error

#### Definition (zero-error probabilistic time)

The class  $\mathsf{ZTIME}(T(n))$  is the set of languages *L* for which there exists a probabilistic Turing machine *M* with expected running time T(n) such that whenever *M* halts on input  $x \in \{0, 1\}^*$ , we have that M(x) = 1 if and only if  $x \in L$ .

Definition (Zero-error probabilistic polynomial time)

$$\mathsf{ZPP} = \bigcup_{d=1}^{\infty} \mathsf{ZTIME}(n^d)$$



# **ZPP:** Properties and Relationships

#### • ZPP algorithms are called Las Vegas algorithms

#### • $ZPP = RP \cap coRP$

- ► Basic idea "⊇": perform repeated runs of both the RP and the coRP algorithm until one of them gives a definitive answer
- ► Basic idea "⊆": run ZPP algorithm for polynomial time, use default answer if the ZPP algorithm does not stop



# BPTIME and BPP: Two-sided error

#### Definition (Bounded-error probabilistic time)

The class  $\mathsf{BPTIME}(T(n))$  is the set of languages *L* for which there exists a probabilistic Turing machine *M* and a constant c > 0 such that *M* runs in time  $c \cdot T(n)$ , and

- for all  $x \in L$ , we have  $\Pr[M(x) = 1] \ge 2/3$ , and
- for all  $x \notin L$ , we have  $\Pr[M(x) = 0] \ge 2/3$ .

#### Definition (Bounded-error probabilistic polynomial time)

$$\mathsf{BPP} = \bigcup_{d=1}^{\infty} \mathsf{BPTIME}(n^d)$$



# **BPP:** Properties and Relationships

#### Relationships and completeness

- $\mathsf{RP} \subseteq \mathsf{BPP}$
- $coRP \subseteq BPP$
- BPP  $\subseteq \Sigma_2^p \cap \Pi_2^p$
- No known complete problems for BPP

#### • Proving separations for BPP seems difficult

- We don't even know if BPP  $\neq$  NEXP!
- ▶ On the other hand, it is known that if NP ⊆ BPP, then PH =  $\Sigma_2^p$



# **Polynomial Identity Testing**

- A polynomial is *identically zero* if and only if its monomial representation equals 0
- Example:

$$-xy + (x - y)(x^{2} + y) + x^{2}(y - x) + y^{2}$$
  
=  $-xy + x^{3} + xy - yx^{2} - y^{2} + x^{2}y - x^{3} + y^{2}$   
=  $-xy + xy - x^{3} + x^{3} - yx^{2} + x^{2}y - y^{2} + y^{2} = 0$ 

is identically zero

• Two polynomials, p and q over variables  $x_1, ..., x_n$ , are *equal* iff the polynomial p - q is identically zero



# **Polynomial Identity Testing**

 One can obtain a Monte Carlo algorithm for checking whether a polynomial is not identically zero by using the *Schwartz-Zippel lemma*:

#### Lemma (Schwartz-Zippel)

Let  $p(x_1,...,x_n)$  be a multivariate polynomial with total degree  $d \ge 0$ over a field  $\mathbb{F}$ . Assume that p is not identically zero. Let S be a finite subset of  $\mathbb{F}$  and let  $r_1, r_2, ..., r_n$  be selected randomly from S. Then

$$\Pr[p(r_1, r_2, \ldots, r_n) = 0] \leq d/|S|.$$

• No deterministic polynomial time algorithm for this task is known



Definition (Perfect matching)

- Instance: Bipartite graph B = (U, V, E), where  $U = \{u_1, \dots, u_n\}$ ,  $V = \{v_1, \dots, v_n\}$ ,  $E \subseteq U \times V$ .
- **Question:** Is there a set  $E' \subseteq E$  of *n* edges such that for any two distinct edges  $(u, v), (u', v') \in E', u \neq u'$  and  $v \neq v'$  (i.e., is there a *perfect matching*)?
- A perfect matching can be seen as a permutation π of 1,...,n such that (u<sub>i</sub>, v<sub>π(i)</sub>) ∈ E for all u<sub>i</sub> ∈ U

Example (perfect matchings as permutations)





#### Perfect matching is related to the determinant

- Given a graph G, construct an  $n \times n$  matrix  $A^G$ , where the element  $a_{i,j}$  is a variable  $x_{ij}$  if  $(u_i, v_j) \in E$  and 0 otherwise. Determinant of  $A^G$  is

$$\det A^G = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)}$$

where  $\pi$  ranges over permutations of *n* 

Example (perfect matchings and determinants)

$$\begin{array}{c} \underbrace{(u_1)}_{(u_2)} & \underbrace{(v_1)}_{(u_3)} & v_2 \\ \underbrace{(u_3)}_{(u_3)} & \underbrace{(v_3)}_{(v_3)} & A^G = \begin{pmatrix} x_{1,1} & x_{1,2} & 0 \\ 0 & x_{2,2} & x_{2,3} \\ 0 & x_{3,2} & x_{3,3} \end{pmatrix} & \det A^G = \\ \begin{array}{c} \det A^G = \\ x_{1,1} x_{2,2} x_{3,3} - x_{1,1} x_{2,3} x_{3,2} \\ \end{array}$$



# • Determinant of *A<sup>G</sup>* tells us about the existence of a perfect matching

- Bipartite graph G has a perfect matching if and only if there is a term for which a<sub>i,π(i)</sub> ≠ 0 for all i = 1,...,n.
- ► Hence, *G* has a perfect matching if and only if det*A<sup>G</sup>* is not identically 0.

#### Example (perfect matchings and determinants)

$$\begin{array}{c} \underbrace{u_1} & \underbrace{v_1} \\ \underbrace{v_2} \\ \underbrace{v_2} \\ \underbrace{v_3} \\ \underbrace{v_3} \\ \underbrace{v_3} \end{array} A^G = \begin{pmatrix} x_{1,1} & x_{1,2} & 0 \\ 0 & x_{2,2} & x_{2,3} \\ 0 & x_{3,2} & x_{3,3} \end{pmatrix} \quad \begin{array}{c} \det A^G = \\ x_{1,1} x_{2,2} x_{3,3} - x_{1,1} x_{2,3} x_{3,2} \\ \end{array}$$



• Testing whether det*A<sup>G</sup>* is identically 0 for a symbolic matrix *A<sup>G</sup>* containing variables can be done by using a randomised algorithm via Schwartz-Zippel lemma

#### Randomised algorithm for perfect matching

Given an  $n \times n$  matrix  $A^G(x_1, \ldots, x_m)$  with  $m \le n^2$  variables:

- Choose *m* random integers  $i_1, \ldots, i_m$  (between 0 and *M*)
- Compute  $det A^G(i_1, \ldots, i_m)$  (by Gaussian elimination)
- If det $A^G(i_1,\ldots,i_m) \neq 0$ , then return *yes*
- If det $A^G(i_1,\ldots,i_m) = 0$ , then return *no*
- Accepts yes-instances with probability 1 n/M
- Rejects no-instances always

# **BPP Error Reduction**

Theorem

Let  $L \subseteq \{0,1\}^*$  be a language, and assume that there is a polynomial-time PTM M such that for every  $x \in \{0,1\}^*$ , we have

 $\Pr[M(x) = L(x)] \ge 1/2 + |x|^{-c}$ 

for constant c > 1. Then for every constant d > 0, there is a polynomial-time PTM M' such that for every  $x \in \{0, 1\}^*$ , we have

$$\Pr[M'(x) = L(x)] \ge 1 - 2^{-|x|^d}.$$

• Implies that r = 2/3 in the definition of BPP can be replaced by any constant r > 1/2. (In fact even by a function that approaches 1/2 at most polynomially.)



# BPP Error Reduction: Proof

- Machine M' does the following on input  $x \in \{0, 1\}^*$ :
  - Run M(x) for  $k = 8 |x|^{2c+d}$  times to obtain outputs  $y_1, y_2, \dots, y_k$
  - Output majority of  $y_1, y_2, \ldots, y_k$
- We need to show that probability of the wrong answer is exponentially small
  - ▶ Define random variable X<sub>i</sub> so that X<sub>i</sub> is 0 if y<sub>i</sub> = L(x), and 1 otherwise
  - $\sum_{i=1}^{k} X_i$  counts the number of *wrong answers*
  - We want to prove that  $\Pr\left[\sum_{i=1}^{k} X_i \ge k/2\right] \le 1 2^{-|x|^d}$
  - For this, we use the Chernoff bound



# **Chernoff Bound**

#### Theorem (Chernoff bound)

Suppose that  $X_1, \ldots, X_k$  are independent random variables taking the values 1 and 0 with probabilities p and 1 - p, respectively, and consider their sum  $X = \sum_{i=1}^{k} X_i$ . Then for all  $0 \le \delta \le 1$ ,

$$\Pr[X \ge (1+\delta)pk] \le e^{-\frac{\delta^2}{3}pk}.$$



#### BPP Error Reduction: Proof

- We now apply Chernoff bound to random variables X<sub>i</sub>:
  - Random variables X<sub>i</sub> are independent
  - ▶  $p = 1/2 |x|^{-c}$
  - We set  $\delta = |x|^{-c}/2$
  - Then  $(1+\delta)pk < k/2$
  - Thus  $\Pr\left[\sum_{i=1}^{k} X_i \ge k/2\right] \le \Pr\left[\sum_{i=1}^{k} X_i \ge (1+\delta)pk\right]$
- By the Chernoff bound, we have

$$\Pr\left[\sum_{i=1}^{k} X_i \ge (1+\delta)pk\right] \le e^{-\frac{\delta^2}{3}pk} \le 2^{-|x|^d}$$



# **Error Reduction**

#### • Error reduction for BPP can be used to prove BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$

- Basic idea: since we can make acceptance probability exponentially small, there is a very small certificate for accepting or rejecting states
- Can be checked in  $\Sigma_2^p$
- Need some non-trivial technical details
- Error reduction works also for RP and coRP
  - Success probability  $|x|^{-c}$  is enough
  - Easier to prove, no need for Chernoff bound



# **Probabilistic and Quantum Computation**

- Strong Church-Turing thesis: any physically realisable system can be simulated by a Turing machine with polynomial overhead
  - Would require that BPP = P
  - This sounds surprising, but may well be the case (or not)

#### • What about quantum computation?

- Quantum polynomial time BQP
- Best known quantum algorithms beat best known randomised algorithms for some problems
- Known:  $BPP \subseteq BQP \subseteq PSPACE$



# Lecture 12: Summary

- Monte Carlo algorithms: RP and coRP
- Las Vegas algorithms: ZPP
- BPP
- Polynomial Identity Testing
- Error reduction

