
Basic use of Crystallography Open Database

Search interface

- COD is open access, so anyone can use it without any licence fees
- Open a web browser and go to http://www.crystallography.net/
- Click Search

Browse
Search
Search by structural formula

- The search interface is not that fancy, but basic queries are easy
- Let's start with NaCl
- 1 to 8 elements: Na Cl
- number of distinct elements min and max: 2 2
 - Without this setting, you will get structures including Na and Cl, but not excluding other elements. For example NaClO₃.
- Click Send

Search results

- You will get the search results in the format below
 - In the case of NaCl, there are 34 structures in the database
- You can save the structure as a CIF file by clicking the CIF link of the structure
- You can view the details of the database entry by clicking the COD ID link

Search results

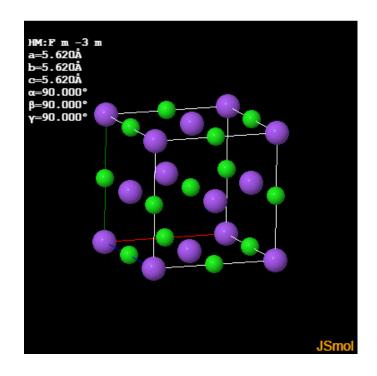
Result: there are 34 entries in the selection

Switch to the old layout of the page

Download all results as: list of COD numbers | list of CIF URLs | data in CSV format | archive of CIF files (ZIP)

Searching elements including Na, Cl number of elements between 2 and 2

COD ID 🛦	Links	Formula ▲	Space group ▲	Cell parameters	Cell volume ▲	Bibliography
1000041	CIF	Cl Na	F m -3 m	5.62; 5.62; 5.62 90; 90; 90	177.5	Abrahams, S C; Bernstein, J L Accuracy of an automatic diffractometer. measurement of the sodium chloride structure factors <u>Acta Crystallographica (1,1948-23,1967)</u> , 1965, 18, 926-932
2104025	CIF Paper	Cl Na	<u>P m -3 m</u>	2.86; 2.86; 2.86 90; 90; 90	23.394	Shiraki, Koichi; Tsuchiya, Taku; Ono, Shigeaki Structural refinements of high-pressure phases in germanium dioxide <u>Acta Crystallographica Section B</u> , 2003, 52, 701-708
2311042	CIF	Cl Na	F m -3 m	5.62; 5.62; 5.62 90; 90; 90	177.504	Juhás, Pavol; Farrow, Christopher L.; Yang, Xiaohao; Knox, Kevin R.; Billinge, Simon J. L. Complex modeling: a strategy and software program for combining multiple information source <u>Acta Crystallographica Section A</u> , 2015, 71, 562-568


Quick visualization

- Click the first resulting COD ID 1000041
- The page includes a quick visualization implemented using JSmol
- Right-click for menu if you want to change settings (e.g. Symmetry -> Reload {1 1 1})
- A download link to the CIF file is also available (Coordinates 1000041.cif).
- You can also load COD structures directly to Jmol without downloading the CIF
 - Details in Jmol instructions (link)
- Note: Please don't click "Display in Jmol" in COD: this will try to open the structure in a Jmol Java applet inside the browser. It most probably won't work.

Information card for 1000041

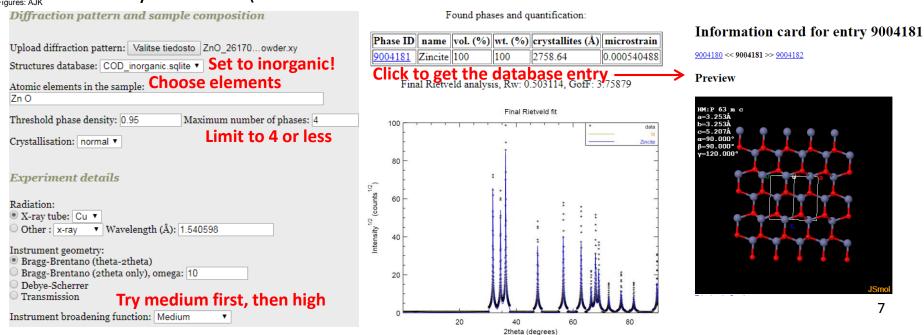
1000040 << 1000041 >> 1000042

Preview

Structure parameters

• For every database entry, COD shows the bibliographic information and other key information in a table below the quick visualization

▼ Structure parameters


Chemical name	Sodium chloride			
Formula	Cl Na			
Calculated formula	Cl Na			
SMILES	[Na+].[C1-]			
Title of publication	Accuracy of an automatic diffractometer, measurement of the sodium chloride structure factors			
Authors of publication	Abrahams, S C; Bernstein, J L			
Journal of publication	Acta Crystallographica (1,1948-23,1967)			
Year of publication	1965			
Journal volume	18			
Pages of publication	926 - 932			
a	5.62 Å			
b	5.62 Å			
c	5.62 Å			
α	90°			
β	90°			
γ	90°			
Cell volume	177.5 Å ³			
Number of distinct elements	2			
Hermann-Mauguin symmetry space group	F m -3 m			
Hall symmetry space group	-F 4 2 3			
Residual factor for all reflections	0.022			
Has coordinates	Yes			
Has disorder	No			
Has F _{obs}	No			

Advanced COD topics (starting from Lecture 7)

Powder pattern matching with Crystallography Open Database

- COD (http://www.crystallography.net/cod/) has a large set of crystal structures
- Powder patterns have been simulated for all structures and collected into a database that can be used for pattern matching and phase identification
- Has been integrated in some commercial programs (Rigaku, PANalytical, Match!) and with free QualX2 program (http://www.ba.ic.cnr.it/softwareic/qualx/)
- Web search available at http://cod.iutcaen.unicaen.fr/

Try with ZnO (data in Materials -> Data files for lectures -> Lecture 07

