

ELEC-E8111 Autonomous Mobile Robots, 5 op Course introduction

Arto Visala 22.2.2019

What do you expect from the course?

What do you expect to learn from the course?

Learning goals – What's the course about?

- Understand the main challenges in mobile robotics
- Understand what are mobile robots made of
 - Sub-systems (perception, mobility, navigation, planning, power, ...)
 - Basic approaches and terminology for each sub-system
 - Methodology and algorithms in mobile robotics
- Learn the characteristics in three applications areas
 - 1. Indoor mobile service robot
 - 2. Field Robot: Outdoor semiautonomous vehicle / heavy duty machine UGV
 - 3. Autonomous traffic vehicle
- Not processing, manipulation and grasping

Prerequisities

- Robotics basics (coordinate transformations, kinematics)
- Control engineering basics (feedback, state estimation)
- Machine vision basics
- Math (probability, matrix algebra)
- Matlab

Follow Mycourses!

- Lectures: the concepts, terminology and algorithms.
 Feb 26- Mar 28
 - On Tuesday 14:15 16:00, room TU2/2005 (TU2), TUAS, Maarintie 8.
 - On Wednesday 12:15 14:00, room TU2/2005 (TU2), TUAS, Maarintie 8

Lectures (estimate)

	Nro	topics
۸"	1	Course introduction and arrangements Introduction to mobile robots
	2	Robot control system architecture Reactive robotics
	3	Team works: 1) Design of a case robot system 2) Testing algorithms under ROS/ Pioneer Introduction to ROS Locomotion, Kinematics, and Low level Motion Control
	4	Sensing and perception, overview. - Kalman-filter based traditional vehicle localization
	5	SLAM = Simultaneous Localization and Mapping Extended Kalman Filter SLAM (EKF SLAM)
	6	Particle filter and Fast SLAM
	7	Graph SLAM
	8	Satellite Positioning - GNSS technologies
	9	Pose Estimation, Inertial Navigation Systems (INS), Inertial Measurement Unit (IMU)
	10	Visual localization and object recognition
	11	Graph based Path and Motion Planning, Indoor A*. Path and Motion Planning, Outdoor D*
	12	Outdoor Path and Motion Planning Motion Control

Design of a case robot system

In design tasks, four application cases given, each team of 4 students selects one, extra functionality can be freely added:

- 1. Indoor (2018) : Cleaning robot for cinemas (needs climbing stairs as well).
- 2. Indoor (2018) : Drinks order and delivery robot at restaurant.
- 3. Outdoor (2018) : Autonomous freight trucks for fixed routes on highways between terminals.
- 4. Outdoor (2018) : Autonomous ferry between Suomenlinna and Helsinki Market Place (Kauppatori).

You can get extra points by design rated as excellent

Testing algorithms under ROS on Pioneer robot platform

- Done in groups of 4 students
 - Groups self-organization as you like, Team leader
- 1) Explore and map with SLAM an unknown area
- 2) Plan the collision free path of the robot
- 3) Implement and test motion control with ROS
- 4) Document the experiments and show the final operation of the robot
- You can get extra points by demonstrating other different SLAM and/or path planner algorithms.

Grading and evaluation

• To pass

- Normal Exam, testing understanding
- Pass, possibly extra points if well done, of Team works: Design task and ROS/Pioneer, testing ability to apply

CHANGED FROM LAST YEAR!

- Grading
 - Basic Grading on the basis of the Exam, max 36 points
 - Team: Design task, 3 points up to about 50% of one grade improvement
 - Team: ROS/Pioneer, 3 points up to about 50% of one grade improvement

Workload estimate

- Lectures 24 h
- Working at home with lecture material 24 h
- Team: Design task, 26 h
- Team: ROS/Pioneer, 26 h
- Reading for exam 35 h
- Total 135 h

Material

- Lectures and all other material in Mycourses
- Alonzo Kelly, CMU, Mobile Robotics: Mathematics Models and Methods, Cambridge University Press, 2014
- Trun & al, Probabilistic robotics, MIT Press 2005.
- Siegwart, Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press (2nd ed.)
- Choset & al, *Principles of Robot Motion*, MIT Press 2005

Teachers

- Lecturers
 - Prof Arto Visala (arto.visala@aalto.fi)
 - Research Fellow Dr Mika Vainio (mika.vainio@aalto.fi)
 - Dr Kshitij Tiwari, (kshitij.tiwari@aalto.fi)
- Team work:
 - Design of a case robot system Testing algorithms under ROS/ Pioneer

Course assistants

Dr Mika Vainio (mika.vainio@aalto.fi)

