

Biological treatment processes of water and waste

WAT - E2180

Anna Mikola Professor of Practice D Sc (Tech)

Lecture outline

Course team introduction Participants' introduction Course's learning outcomes Content of the course

- Lectures & exercises
- Laboratory work
- Excursion

! 4 groups for the group work → In MyCourses

Introduction discussion: What kind of biological processes do you already know?

Lecturer Anna Mikola

- Working experience:
 - 3 years at Nopon Oy
 - Researcher at HUT/Aalto

- M.Sc. From HUT Water lab 1999
- Exchange year in France at ENCR 1994-1995
- D. Sc. (Tech.) Spring 2013 Dissertation: The effect of flow equalizationa and prefermentation on BNR

- 18 years with a consultant (Kiuru&Rautiainen Oy, Ramboll Finland)
- Post-doctoral researcher at Aalto 2013-2018
- Lived 5 years in Berlin, 4 children
- Visiting researcher in INSA Toulouse in 2017
- Professor of Practice since 2018

The course team

Course's microbiology content and lab reactors: Dr. Antonina Kruglova Course assistant: Maija Sihvonen

Lab staff: Aino Peltola, Heikki Särkkä and Marina Sushko Lecturers from the lab: Irina Levchuk Antonina Kruglova

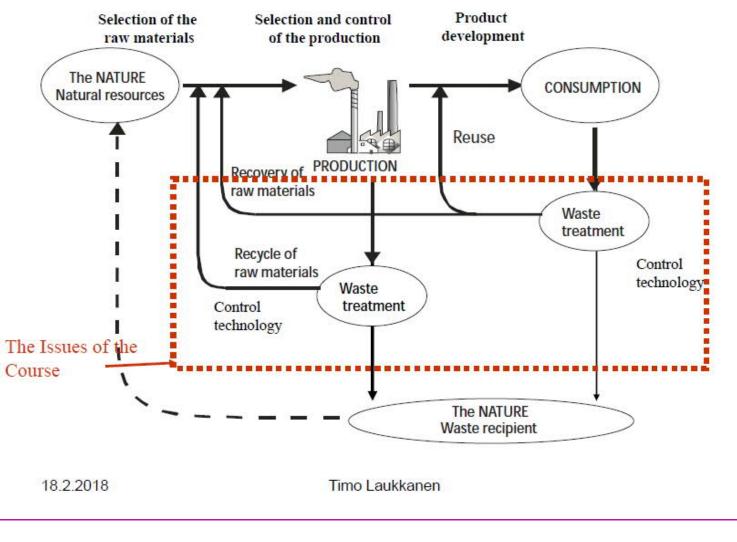
Guest lecturers from Griffin Refineries and Tampere University

Laitoksen nimi 2/26/2019 4

Participants' introduction

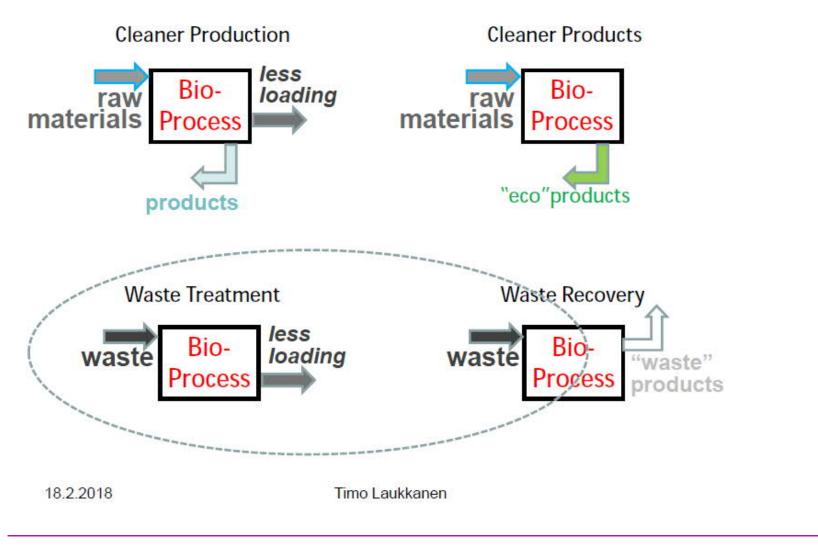
- 1 minute each containing e.g.
- Background?
- Experience with biological processes
- Expectations for this course?

Learning outcomes


Upon completion, the student should be able to:

- 1) Describe the most important biological water, wastewater, sludge, waste and gas treatment processes
- 2) Explain biochemical, microbiological and ecological phenomena in biological treatment processes
- 3) Form simple mass balances of biological unit processes
- 4) Identify the critical factors affecting the efficiency of biological treatment processes and describe their control systems

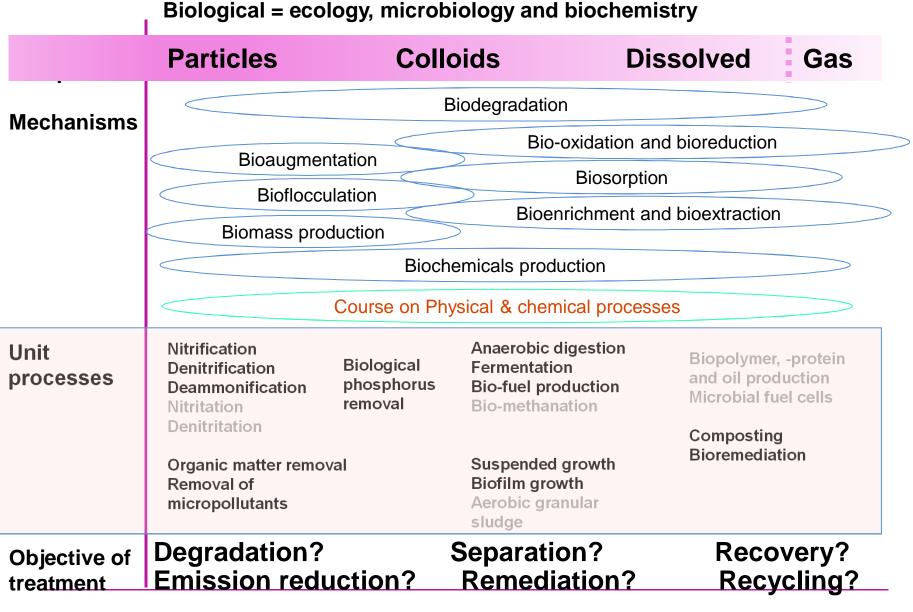
The focus will be on wastewater treatment but same principles and phenomena are applicable everywhere!!



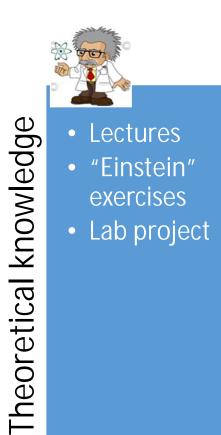
Material flows of the human economy

Aalto University School of Engineering

Environmental Sound Bioprocesses



Environmental challenges to be solved



Course content

- •Laboratory pilot operation
- •Lab project
- Excursion

Timeline for the course

V	Week				0	11 ·	12	13	14	15
			HW 1		HW 2	HW 3	HW 4	HW 5		Seminar
Lab pilot		1			Gro	up 1 Gro	up 2 G	roup 3 Gro	oup 4	
	Lectures		Intro	*	*	*	* *	× Excu	* *	
	Exercise DLs					HW 1	HW 2	HW 3	HW 4	HW 5
	Exams					Exam 1	Exam 2		Exam 3	Extra 1,2,3
	Lab project				Monitoring lab Group 1	Microbiology lab Group 2		Group 4		
	Presentation								Support session	Final presentatio ns
	Written report	t			Monitoring notebook					

Course content – lectures, exercises and exams

• Lectures and exercises

- Lecture sessions: 3.5 hours Tuesday afternoon at 13:00 and Thursday morning at 8:30
- Each session will be divided into several interactive lectures, demo exercises and group discussions
- For many sessions some reading

 material will be given before
- Lecture 2-3: Basic process principles
- Lectures 4 5: Microbiology
- Lectures 6 8: Process design and applications

- Homework exercises from most of the sessions (5 sessions, totally 20 exercises)
- The content will be divided into theoretical and practical parts

💕 symbols

Three mid-term exams

- 40 50 min on two Thursdays (at 16:30) and the last one in the beginning of the last lecture
- One extra during the last week
- \rightarrow objective to learn the theory and design principles of the processes

Software used during the course Support sessions for homework exercises

With Maija in the Water lab computer room

- Wednesdays starting at 10:00
- Other suitable slots?

SUMO

- Available in our computer room + TUAS 1621 + MaariE

Course books

Biological wastewater treatment

Author(s) / Editor(s) Henze, Mogens; Loosdrecht, Mark C. M. van; Ekama, George A.; **Brdjanovic**, Damir **Publisher IWA Publishing Copyright Date 2008** ISBN 978-1-84339-188-3 Electronic ISBN 978-1-68015-582-2

Environmental biotechnology

Author(s) / Editor(s) Bhattacharyya, Bimal C.; Banerjee, Rintu **Publisher Oxford University Press Copyright Date 2007** ISBN 978-0-19-568782-8 Electronic ISBN 978-1-61344-143-5

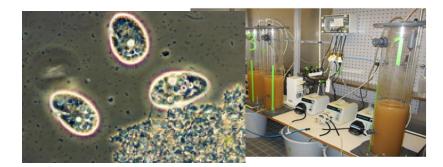
Both available as eBook

15

Course content – lab project

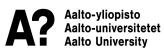
Laboratory work

- Task: to operate and monitor two lab reactors during four weeks in different conditions
- Weeks 1-2: Introduction to basic monitoring and microbiology→ monitoring notebook
- Weeks 2-5: Four groups of students will operate the reactor in different conditions (oxygen, temperature, total N removal, bioP)
- Week 6: Scientific papers
- Week 7: Presentation and/or poster


• Excursion

- Excursion to Viikinmäki wastewater treatment plant on Thursday 28.3.
- WWTPcaching at the plant
- → Objective to understand the theories and design principles in practice, to learn about the process monitoring and to assess, present, plan and report practical boratory work.

Lab project



Content and Learning the **Focusing on** basic monitoring, objectives, microbiology linking to **Preparing own** lab toolbox

Presenting the results, learning from each other, feedback

Students operating the reactors independently

Conditions: 1: DO 2: Anoxic 3: Anaerobic 4: Temperature

theory

EXCURSION

To Viikinmäki wastewater treatment plant

THURSDAY 28.3. during the course teaching session

Some assignments during the visit

Using public transportation

COMPULSORY

Pictures: HSY

Reactor operation and monitoring

- Reactors: Sequencing bacth reactor SBR and membrane bioreactor MBR
- Objective: Study two different suspended growth reactors with different sludge age during 4 weeks
- Monitoring process conditions, effluent water quality and sludge characteristics
- Week 1: Effect of oxygen
- Week 2: Implementation of anoxic sequence in the SBR
- Week 3: Implementation of anaerobic sequence in the SBR
- Week 4: Effect of temperature
- Influent water: synthetic wastewater

Written outcome – Individual work Monitoring toolbox DL 7.3.2019

- Written based on the monitoring lab on Tuesday 5.3.
- Purpose:
 - Work as a toolbox and checklist for you further work with the reactors
- Submitted to MyCourses and evaluated

1) Short work description of all the monitoring methods

- On-line probes
- Sampling
- Analysis
- 2) Purpose of the method
 3) Special hints for avoiding problems (e.g. typical values, calibration needs, ...)

Seminar and poster – Group work Tuesday 4.4. at 13:00

- Three roles in the groups:
 - Presenters
 - Competitors
 - Planners

- Three outcomes:

- Presentation of the lab study
- Presentation of another study (from the literature)
- Experimental plan and expected outcomes for your further study

- Presentations: 10 min +
 10 min + 10 min
- Discussion (10 15 min)

Forming the groups for the lab work

Some boundary conditions:

- Responsibility over the reactor during one week
- 4 groups (1,2,3 and 4) for each week of the pilot operation (from Wednesday to Wednesday)
- Each group decides the monitoring (about 3 hour) schedule and informs the lab (Aino)

Bonus points from the lecture presentation

- Lecture on April 2nd
- Several short presentations about various applications of biological processes
- If you are especially interested in something or have acquired special knowledge of a process, you can prepare a 20 min presentation for the lecture

Topics:

- Membrane bioreactors
- Microbial fuel cells
- Aerobic granular sludge
- Biological iron removal
- Biomethanation

Workload

Learning activity	Workload calculation (hours)	Remarks
Lectures + excu	35	10 x 3,5 hours
Exercises	10	Support sessions (not obligatory)
Home assignments	15	3 hours per homework assignment
Reading materials	10	5-10 pages for each session (5 sessions)
Lab project work	34	12 hour in the lab, 4 hours in presentations, 20 h for preparing, reporting and preparing the presentation
Midterm exam (3x)	15	Ah preparation for each mid-term exam + 1h writing the exam
Independent reflection	15	
In tota	134	

Our attempts to reduce the workload:

- Good instructions and clear separation between theoretical and practical assignments
- Clear links and supporting elements between different assignments
- Motivating and inspiring course content

Communication

- MyCourses -page
 - Lecture material available mostly before the lecture
 - Instructions for homework assignments
 - Submission of home assignments & grades
 - Information and submissions for the lab project
- Communicating
 - Whole course: MyCourses & email
 - <u>anna.mikola@aalto.fi</u>, <u>Antonina.kruglona@aalto.fi</u>, <u>Maija.sihvonen@aalto.fi</u>
 - Within the groups: please organize the communication within the group already in the beginning!

Course grading

- 40 % mid-term exams 3 exams 20 points each
- 30 % lab project (monitoring toolbox, excursion assignment, presentation)
 - 1/3 from the individual part, 2/3 from the group work
 - Grading scale 1 5
 - The same grade for the whole group unless the group communicates differences in contribution
- 30 % homework exercises
 - 5 exercises, 75 points total
- Bonus possibility up to 0.5 grade when attending the lectures
- NOTE!! Late submission 1 week \rightarrow 50% off, more \rightarrow 100% off

Grading thresholds:

1-40% of total points **2**-52% **3**-64% **4**-76% **5**-88%

Important to do after the introduction lecture

Register to one of the groups 1 - 4 in MyCourses

Share contact information with your group members (1-4)

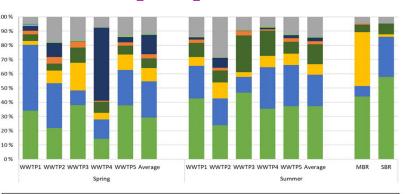
Start planning your monitoring week shedule (2 students – 2-3 hours every day during your week) Submit the schedule in MyCourses

Biological processes

Aalto University School of Engineering

What kind of biological processes in environmental engineering you already know?

Discussion in groups


Laitoksen nimi 2/26/2019 29

Examples of on-going research

Aalto University School of Engineering

Development of cold-climate treatment processes using microbial population information

- Bacteria of low-temperature processes (Doctoral student Antonina Kruglova, PostDoc Alejandro Gongalez-Martinez, M.Sc. Jenni Kesulahti, M.Sc. student Khoi Le Minh)
- II. Comparison of conventional activated sludge with advanced activated sludge community (Doctoral student Antonina Kruglova)
- III. Aerobic granular sludge in low temperatures (PostDoc Alejandro Gongalez-Martinez)

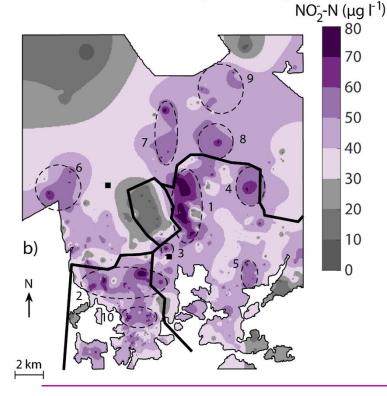
■ Proteobacteria 🔳 Actinobacteria 💻 Bacteroidetes 🔳 Firmicutes 💻 Chloroflexi 🔳 Acidobacteria 🔲 Planctomycetes 🔳 Other

Porvoo

Viikinmäki

PC3 (17.85 %)

PC2 (18.8 %)


Turk

26.2.2019

Water Supply

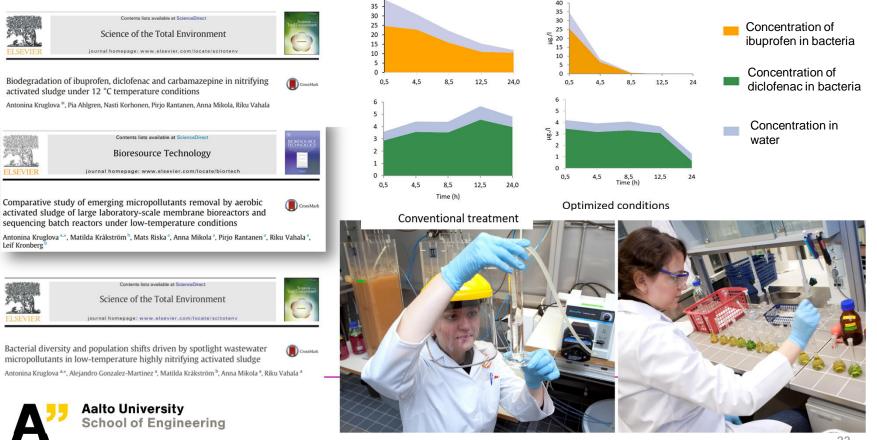
In drinking water quality the focus is in the role of natural organic matter in the water quality changes in the distribution system.

• The influence of organic matter on nitrification in the drinking water distribution system (Lic. Tech. Pirjo Rantanen)

Journal of Water Resource and Protection, 2017, 9, 1026-1042 <u>http://www.scirp.org/journal/jwarp</u> ISSN Online: 1945-3108 ISSN Print: 1945-3094

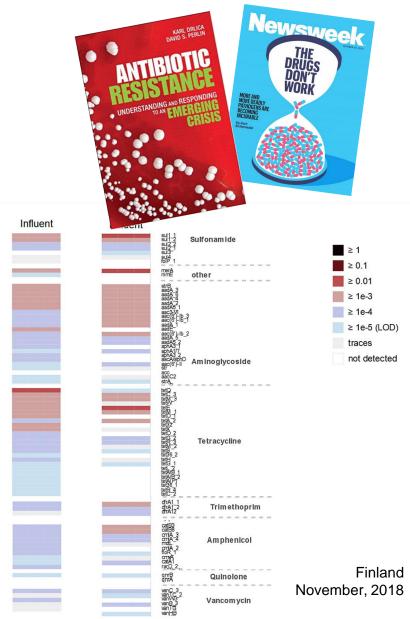
The Spatial Distribution of Nitrite Concentrations in a Large Drinking Water Distribution System in Finland

Pirjo-Liisa Rantanen^{1*}, Minna M. Keinänen-Toivola², Merja Ahonen², Ilkka Mellin³, Duoying Zhang⁴, Tuula Laakso⁵, Riku Vahala¹


¹Department of Built Environment, School of Engineering, Aalto University, Espoo, Finland
 ²Faculty of Technology, Satakunta University of Applied Sciences, Rauma, Finland
 ³Department of Mathematics and Systems Analysis, School of Science, Aalto University, Espoo, Finland
 ⁴School of Civil Engineering, Heilongjiang University, Harbin, China
 ⁵Helsinki Regional Environmental Services Authority, Helsinki, Finland

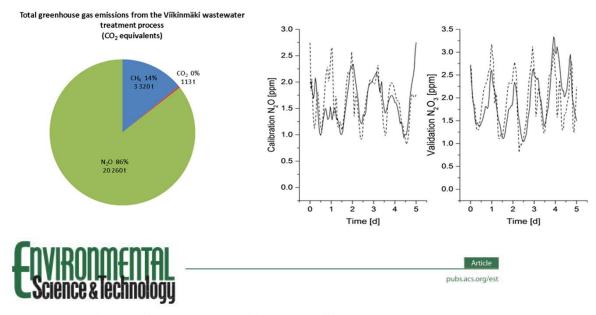
Department of Civil and Environmental Engineering 26.2.2019

Enhanced treatment of micropollutants from wastewater


Optimization of micropollutants biological removal at low temperatures

Antibiotics and antibiotics resistance bacteria in wastewater treatment

- Global antibiotics resistance crisis
- WWTPs are among the main sources of antibiotics resistance in the environmental
- Removal rates in wastewater treatment are highly dependent on process conditions and temperature


(Kruglova et al., 2014, Kruglova et al., 2016)

GHG emission studies from advanced nutrient removal processes

Comprehensive inventory of N_2O emissions from an advanced WWTP and implementation of N_2O in the plant wide process model (Collaboration with HSY)

Nitrous Oxide Production at a Fully Covered Wastewater-Treatment Plant: Results of a Long-Term Online Monitoring Campaign

³ Heta Kosonen,[†] Mari Heinonen,^{*,‡} Anna Mikola,[†] Henri Haimi,[†] Michela Mulas,^{†,||} Francesco Corona,^{‡,⊥}
 ⁴ and Riku Vahala[†]

Department of Built Environment 26.2.2019 35

.

Smarter monitoring of micropollutants from wastewater

 Screening of wastewater toxicity based on Effect-Directed Analysis (EDA) (Doctoral student Pia Välitalo)

