
SEAndroid – in 90 minutes

Jan-Erik Ekberg
Huawei, CTO, Mobile Security

26.2.2019

pic: Elena Reshtova

allow dog fido : dog_chow eat
neverallow {domain -dog} fido : * *

Pi
c:

 h
tt

p:
//

pe
op

le
.re

dh
at

.c
om

/d
uf

fy
/

se
lin

ux
/s

el
in

ux
-c

ol
or

in
g-

bo
ok

_A
4-

St
ap

le
d.

pd
f

http://people.redhat.com/duffy/

Advert (for Thursday)
What is platform security?

1. Isolation of apps, actors,
containers, sandboxes

2. A way to set up and
configure the isolation
(secure boot)

3. Some keys and trust roots

Rich Features

TCB

Security

Trust Anchor

Today we look at one (abstract) access control paradigm

Setup

On Thursday we look at practical problems with all of this

We are also at a crossroads where Spectre, ROCA, PQC(?)
are in a sense deteriorating the fundaments of PlatSec

Kernel

syscalls

TPM eSE TEE SIM

LSM Linux capabilities

SELinux
SMACK

Tomoyo
AppArmorFSFSs

UID/GID

FS attributes IMA

apps
apps daemons

daemons

Platform Access Control (Linux)
1. Constrain access to least-privilege
2. Protect against infection
3. Multi-user isolation
4. Multi-app isolation

Android permissions
Java Security

VM

apps
apps

Seccomp BPF

Minijail

1. Chain validated based on PK Hash in fuses
2. Many bootloaders from different stakeholders
3. Integrity guarantees (w. rollback protection)

TZ

PBL

Secure Boot (~Android)

SBL

AppBL/XBL
fastboot

FOTA/Recovery
(Linux + RAMDisk)

Normal boot
(Linux + RAMDisk)

SELinux policy

Switch to
rootfs

SELinux policy
visible in /

1. Policy in RAMdisk
2. --> integrity “guaranteed”

 Activation in init binary
 --> Time of activation before full filesystem in use

DMVerity

Some milestones

• (Tech rep 1973) Multics Security Enhancements
System (kernel) access control
• (Usenix 99): The Flask Security Architecture
• Access control decision and enforcement separation
• (Usenix 01): Meeting Critical Security Objectives with
• Security-Enhanced Linux (Loscocco / Smalley)
•

• Domain-type enforcement for Linux (SELinux)

After 3 years of innovation and 15 years of
implementation work SEAndroid

This you already learned ...

Access control mechanisms

Subjects Objects

Other ”interesting avenues”: Role-base access control (RBAC), Low-watermark (security levels), Lattice-based,
Discretionary Access Control (DAC) = user access, information-flow based

It is all about optimization!

1. Access control lists
2. Permissions / capabilites
3. Domain-type

This is a matrix!

The ”thing” that is granted to the subject
for the object (like read, write, delete...) is often,
but not always denoted permission

Not like this: “There is no practical difference between a type and a domain. The
policy rules gives them significance. In particular, if an object has the same type
as a process' domain, this means something only if the policy explicitly says so (it
usually does). All types can be applied to any object since they are just names”

A type is a domain when it is not a type

SEAndroid types SEAndroid types

Subject types are domains Object types are types

Computing system
objects

Computing system
objects

A subject operates on an object, and as an optimization a domain operates on a type

Basic principle (dimension 1)

allow
rulesN domains

(also essentially
types)

M types

Objects are e.g. files, sockets.. Objects
that participate in the access control
are assigned a type

X processes
(programs, actors)

Allow rules are basically
always between 2 entities
a domain and a type

Y objects

Subjects are primarily processes.
Processes that participate in the access
control are assigned a domain

Domain and types are defined by each policy, and vary. Domain and type names are NOT FIXED by any agreement, i.e.
domains and types cannot be counted on to remain consistent in name or meaning across policy generations.

Basic principle (dimension 1B)

allow
rulesN domains

(also essentially
types)

In Android, the processes are to a large extent middleware processes running
In the Dalvik virtual machine, and installed by the Android installer. The
Middleware MAC (MMAC) addresses this detail

Issuer (signs program)

Installer (verifies
program signature)

SEAndroid MMAC policy
(key: public keys for programs
values: 1) seinfodomain,

2) android permission list)

Android permissions
(e.g. access to camera, net, ...)

Running
dalvik process

...

Android subject identity:

- Origin (RSA key)
- Package name
- UID (local)
- Filename (system services)

Basic principle (dimension 2)

allow
rulesN domains

(also essentially
types)

M types

Objects like files,
sockets..

But! An allow rule includes also the class, and within that the permissions allowed by
the rule. Class and permission names are ”well known” as defined by NSA / SELinux

An object is always an OS primitive of some sort. This is not a policy issue, this is reality. An
object therefore belongs to one or more classes which are predefined by the system
proper. A class can be e.g. file, socket, character device,

Class

A class is associated with a fixed
set of permissions (e.g read, write,
open..), often closely mapped to system
call functionality. Again,
the set of available permission is
predefined, policy does not change
that

Permissions

Classes and permissions (examples)

unix_stream_socket
append, bind, connect, create, write, relabelfrom
ioctl, name_bind, sendto, recv_msg, send_msg
getattr, setattr, accept, getopt, read, setopt, shutdown, recvfrom
lock, relabelto, listen, acceptfrom, connectto, newconn

A daemon or service provides Unix domain socket access for clients

A device driver (say a serial port) provides device access

chr_file
append, create, execute, write, relabelfrom, link, unlink
ioctl, getattr, setattr, read, rename, lock, relabelto, mounton
quotaon, swapon, audit_access, entrypoint, execmod,
execute_no_trans, open

These are more or less defined by
http://selinuxproject.org/page/ObjectClassesPerms
(or in Android source code:

android / platform/external/sepolicy / master / . / access_vectors

http://selinuxproject.org/page/ObjectClassesPerms

error = security_file_open(f, cred);
if (error) goto cleanup_all;

static int do_dentry_open(struct file *f, int (*open)(struct inode *, struct file *),
const struct cred *cred)

Class/ Permission illustration
Inside fs/open.c (sys_open syscall)

...
 class ’file’, permission ’open’

Inside security.c (LSM)
int security_file_open(struct file *file, const struct cred *cred) {

int ret;
ret = security_ops->file_open(file, cred);
if (ret) return ret;
return fsnotify_perm(file, MAY_OPEN);

.file_open = selinux_file_open,
Inside selinux/hooks.c

SEAndroid policy allow rules
Since SEAndroid essentially is a single-user system, much of the complexity of users
and roles is collapsed (one user, one role only)

A simple rule (there is in fact more to it) consists of:

ALLOW [domain] [type] : [class] {[allowed permissions]}

Subject
(a process in a domain)

Object(a file or other resource)

Resource class (from predefined set)

Class-specific permissions that
are allowed by this rule

The [type] can be self. If applied to an attribute (explained later), it allows only access
within each atomic domain, not among all pairs of domains covered by the attribute.

Allow rule examples (from a commercial Android phone)

1) allow untrusteddomain hci_attach_dev : chr_file { ioctl read getattr lock open } ;

2) allow system_app dhcp_data_file : lnk_file { ioctl read getattr lock open } ;

3) allow untrusteddomain system_app : binder { call transfer } ;

4) allow logwrapper dhcp_system_file : dir { ioctl read getattr search open } ;

5) allow healthd healthd_exec : file { read execute entrypoint } ;

Transition rule(sets)
Subjects and objects rules operate according to their domains/types : But how does
a new process get into its domain? (http://selinuxproject.org/page/TypeRules#type_transition_Rule)

Launcher
(init_shell_t)

code file
(myfile_exec)

New process
(mydom_t)

Launcher
(init_shell_t)

fork exec

type_transition init_shell_t myfile_exec: process mydom_t;
Intent (“what we want to happen”)

allow init_shell_t myfile_exec: file execute;
File execution right

File type is an entrypoint into a domain (“object firewall”)

allow mydom_t myfile_exec: file entrypoint;

Process type needs transition right into a domain (“subject firewall”)
allow init_shell_t mydomain_t: process transition;

File read

File contexts / labeling & transition rule for files

type_transition mydom_t var_log_t : file tmp_t;
Intent (“what we want to happen”)

allow mydom_t var_log_t: dir { add_name write search } ;
Right to write to the directory (with type var_log_t)

Right to write files of type tmp_t

allow mydom_t tmp_t: file { create write };

The file contexts file is (in SEAndroid) the source of filesystem labeling

Example lines:
/var/log u:object_r:var_log_t:s0
/dev/block/ram[0-9]* u:object_r:ram_device:s0
/dev(/.*)? u:object_r:device:s0
/system/bin/sh u:object_r:shell_exec:s0

When we want to control the type of files being written (in a shared dir..)

Context files have more attributes than
allow rules

/data/app(/.*)? u:object_r:apk_data_file:s0

Type for the object
user

Role (for RBAC)

Security level
(for MLS)

RegExp expansion

File / device name

user=_app seinfo=myapp domain=myapp_app type=app_data_file

(different parser, obviously..)

View of one SEAndroid policy

Statistics for policy file: sepolicy
Policy Version & Type: v.26 (binary, mls)

Classes: 84 Permissions: 249
Sensitivities: 1 Categories: 1024
Types: 646 Attributes: 44
Users: 1 Roles: 2
Booleans: 9 Cond. Expr.: 9
Allow: 112271 Neverallow: 0
Auditallow: 0 Dontaudit: 173
Type_trans: 227 Type_change: 0
Type_member: 0 Role allow: 0
Role_trans: 0 Range_trans: 0
Constraints: 63 Validatetrans: 0
Initial SIDs: 27 Fs_use: 16
Genfscon: 18 Portcon: 0
Netifcon: 0 Nodecon: 0
Permissives: 0 Polcap: 2

rules

Different kinds of ”targets”

”target” permissions

”domain
entry
rules”

Domains
and types

Smalley & al (SEAndroid)

The complexity of
the listed policy is
close to that of Fedora

System configuration view

Dalvik VM

de
vi

ce
s

so
ck

et
s

An
dr

oi
d

ap
p

An
dr

oi
d

se
rv

ic
e

An
dr

oi
d

ap
p

mac_permissions.xml

service1 service 2

files

file_contexts

sepolicy (binary)
seapp_contexts
(app, user transition contexts)

property_contexts
(application-enforced
policy)

service_contexts
(android service
policy)

Attributes adds complexity to
analysis

Examples of
applicable allow rules

N domains in
attributes
(also essentially types)

M types with attributes

It is typical that class attributes for overall access come from different rules. Say
between a process and a resource, the read rule can come from attributes higher
in the hierarchy, whereas the write access may be specific to individual domains
and types.

Attributes are groups of types (or domains). Rules can also be defined using
attributes.

(From comments in the XML file)
• A signature is a hex encoded X.509 certificate or a tag defined in keys.conf and is

required for each signer tag.
• A signer tag may contain a seinfo tag and multiple package stanzas.
• A default tag is allowed that can contain policy for all apps not signed with a

previously listed cert. It may not contain any inner package stanzas.
• Each signer/default/package tag is allowed to contain one seinfo tag. This tag

represents additional info that each app can use in setting a SELinux security
context on the eventual process.

<!-- Platform dev key in AOSP -->
<signer signature="@PLATFORM" >

<seinfo value="platform" />
</signer>
<!-- All other keys -->
<default>

<seinfo value="default" />
</default>

mac_permissions

String[] packageNames =
getPackageManager().getPackagesForUid(uid);

try{
PackageInfo pkgInfo = getPackageManager()

.getPackageInfo(packageNames[0],
PackageManager.GET_SIGNATURES);

android.content.pm.Signature[] sigs = pkgInfo.signatures;
Log.i("Signature", sigs[0].toCharsString());

...

In Android, the
PackageManager
is a front-end to
Installer data

Zygote
(launcher)

Launching with MAC
Package manifest

MAC permissions

Domain
transition

Launch
process

MyAndroidApp

<signer signature=“… 16ef8108a353a9f7300d06092a864886f70d01010b0500038
20101002ae36b53bd209841e4"><allow-all/><seinfo value=“myprog"/></signer>

For the MMAC part of the policy, the applications are bound by origin. I.e. the
mac_permissions.xml contains a hundred or so public keys in x509/DER format encoded as
XML as the example above. The fields are

-- signature: The x509 certificate containing the public part of the application
signing key
-- <allow-all/>: The MMAC puts no extra constraints on the android permissions
-- seinfo: A mapping to the domain of the policy

As it happens we find the following line in the seapp_contexts policy file:

user=_app seinfo=myprog domain=myprog_app type=app_data_file

I.e. any application signed with a private RSA key corresponding to the public key mentioned
in a certificate in the mac_permissions.xml that follows the template above, will be mapped
to the trustonicpartner_app domain and be accessible (as an object) in accordance with the
type app_data_file

”Example” mac_permissions.xml entry

Android Properties
A policy name resolver for property contexts
A database of configurations and status (like windows registry)

Listed in property_contexts file, e.g.
net.gprs u:object_r:net_radio_prop:s0
selinux. u:object_r:security_prop:s0

Associated with an allow rule, e.g.
allow system security_prop : property_service set

Fixed

1) Property service calls selabel_lookup (.., .., ”selinux.reload”, ..)
2) Lookup finds, and returns *)  u:object_r:security_prop:s0
3) Service asks policy using selinux_check_access() for source request

*)

SEAndroid protection is a moving target (1)
Addition (v30): “Extended permissions” == IOCTL protection

https://selinuxproject.org/page/XpermRules

allow src_t tgt_t : tcp_socket ioctl;
allowxperm src_t tgt_t : tcp_socket ioctl ~0x8927;

allow tee tee_device : chr_file open read write ioctl
allowxperm tee tee_device : chr_file ioctl 0x917

Available rules: allowxperm, dontauditxperm auditallowxperm and neverallowxperm

Examples:

Application

de
vi

ce IOCTL
1: Configure
2: Debug (expose internal memory)
3: Reset in case of error

The ioctl command is a 32 bit number comprised of four fields,
number - sequence number of the command. 8 bits
type - magic number assigned to the driver. 8 bits
size - size of the user data involved. typically 14 bits (arch dep.)
direction - The direction of data transfer. typically 2 bits (arch dep.)

SEAndroid protection is a moving target (2)
Binder protection: “RPC” for Android applications

http://selinuxproject.org/page/NB_SEforAndroid_1

call Perform a binder IPC to a given target process domain (can A
call B?).
impersonate (Not currently used)
set_context_mgr Register self as the Binder Context Manager (aka service-manager)
transfer Transfer a binder reference to another process (used by service-
manager)

Has been available since day one, increasingly taken into use
If carefully used, can limit some obvious data flow attacks

Permissions for Binder class:

Application /
Domain 1

bi
nd

er
Application /

Domain 2

add Add a service
list List services
find Find services

Permissions for Servicemanager class (userspace object):

http://kernsec.org/files/lss2015/lss2015_selinuxinandroidlollipopandm_smalley.pdf

“ServiceManager prevents apps from looking
up arbitrary binder services.”

SEAndroid protection is a moving target (3)
Multi-Level Security (used since v5 or thereabouts):

http://marc.info/?l=seandroid-
list&m=143716685131494&w=2

if (cur->levelFrom != LEVELFROM_NONE) {
char level[255];
switch (cur->levelFrom) {
case LEVELFROM_APP:

snprintf(level, sizeof level, "s0:c%u,c%u",
appid & 0xff,
256 + (appid>>8 & 0xff));

break;
case LEVELFROM_USER:

snprintf(level, sizeof level, "s0:c%u,c%u",
512 + (userid & 0xff),
768 + (userid>>8 & 0xff));

break;
case LEVELFROM_ALL:

snprintf(level, sizeof level, "s0:c%u,c%u,c%u,c%u",
appid & 0xff,
256 + (appid>>8 & 0xff),
512 + (userid & 0xff),
768 + (userid>>8 & 0xff));

Separation between apps and users on a policy level.
In general, MLS allows domains to access types based on level (ordered) and category(unordered)
What we see in SEAndroid are really categories

Process (domain) assignment:

Example avc error (adb logcat):
type=1400 audit(0.0:7): avc: denied { search } for name="com.android.providers.downloads" dev="mmcblk0p23" ino=81932
scontext=u:r:system_app:s0 tcontext=u:object_r:app_data_file:s0:c512,c768 tclass=dir permissive=0

Google m4 macros (later) has support:
mlstrustedsubject
levelFrom=user, app, all

http://www.cs.cornell.edu/courses/cs5430/2012sp/mls.html

Miscellaneous
neverallow rules (assertions)

- a way to shield off unwanted patterns
neverallow { domain -debuggerd -vold -dumpstate -system_server } self:capability

sys_ptrace;

dac_override (and other capabilities)
- does show up in policies – one of the 32 linux capabilities
- overrides all ”standard” file permission checks

allow installd installd : capability { dac_override, sys_nice}

unconfined (macro expansion) – not available any more
- the macros are discussed later. A domain in the attribute unconfined, will be

allowed all (class/permission) access to any type. Shows up as a domain in the final
policy
- a testing tool, e.g. to determine interaction with DAC

self (macro expansion)
allow netd self: { tcp_socket udp_socket} *

- As a target, denotes the domain itself, but not any parent attributes

SecComp as the ”next level of access control”
-- Android O forward – all apps have a seccomp filter

Process
~application

Berkeley
packet filter
(interpreter)

System calls

Seccomp()
syscall

Seccomp()
policy

SecComp
Enforcement Engine

Introduction: https://lwn.net/Articles/656307/

System calls can be filtered wholesale
or individual attributes can be parsed
and acted on

(code fron reference)
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

(offsetof(struct seccomp_data, arch)))
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K ,

AUDIT_ARCH_X86_64 , 1, 0)

Applies per process

If one ”turns off” the seccomp
system call, policy cannot be changed
any more (minijail)

• ”Secure Computing” filter == SecComp, first version 2005
• ”Progammable policy for application on system call layer – very fine grained
• Depending on policy, may cause double-digit

performance overhead

”My” example use case (TEE in Samsung)
(see sepolicy in / on most Samsung phones)

(ART) Dalvik VM

An
dr

oi
d

ap
p

TEE

TA
TA

TA

An
dr

oi
d

ap
p

An
dr

oi
d

ap
p

An
dr

oi
d

ap
p

Mgmt
Daemon

Drv1Drv2

Pr
ov

isi
on

in
g

(s
rv

)

store

An application needs access to
a service (with a file store) and a
character driver to provision and
talk to a TEE

Operating System Kernel

Device Drivers Filesystem

/system/app/mcRegistry
Fallback Registry

Interface needs

/dev/mobicore

Control driver
A char device

Broadcast
Provisioning status notifications
(Intents)

Normal World prog.
Packaged and installed as regular
Android APK

UNIX
domain
docket

/system/bin/mcDriverDaemon

Userspace Daemon
Part of base operating system

UNIX
domain
docket

UNIX
domain
docket

UNIX
domain
docket

UNIX
domain
docket

/data/app/mcRegistry
TA Registry + storage
Contains:
• TA
• Encrypted storage elements

/system/app/RootPA.apk

Provisioning engine
Android System Service
UNIX
domain
docket

Binder
Service
(AIDL)

Provisioning new SP Containers & TAs
(Binder Service/Intents)

Communicating
with TA (in TEE)

(dev r/w; ioctl)

(file r/w)(file r/w)
(dev r/w; ioctl)

(dev r/w; ioctl)

Communicating
with SP TA (in

TEE)
(dev r/w; ioctl)

Loading
SP TAs

Loading TA;
Storage
FileAccess

/dev/mobicore-user

User driver
A char device

Internal operations

Internal operations

Interfaces in practice

Userspace daemon
mcDriverD 2399 root exe ??? ??? ??? ??? /data/app/mcDriverDaemon
mcDriverD 2399 root 0 ??? ??? ??? ??? /dev/null
mcDriverD 2399 root 1 ??? ??? ??? ??? /dev/null
mcDriverD 2399 root 2 ??? ??? ??? ??? /dev/null
mcDriverD 2399 root 3 ??? ??? ??? ??? /dev/log/main
mcDriverD 2399 root 4 ??? ??? ??? ??? /dev/log/radio
mcDriverD 2399 root 5 ??? ??? ??? ??? /dev/console
mcDriverD 2399 root 6 ??? ??? ??? ??? anon_inode:dmabuf
mcDriverD 2399 root 7 ??? ??? ??? ??? anon_inode:dmabuf
mcDriverD 2399 root 8 ??? ??? ??? ??? /dev/log/events
mcDriverD 2399 root 9 ??? ??? ??? ??? /dev/log/system
mcDriverD 2399 root 10 ??? ??? ??? ??? /dev/mobicore
mcDriverD 2399 root 11 ??? ??? ??? ??? /dev/__properties__ (deleted)
mcDriverD 2399 root 12 ??? ??? ??? ??? socket:[4949]
mcDriverD 2399 root 13 ??? ??? ??? ??? socket:[5325]
mcDriverD 2399 root 14 ??? ??? ??? ??? socket:[5326]
mcDriverD 2399 root 15 ??? ??? ??? ??? /dev/mobicore-user
mcDriverD 2399 root 16 ??? ??? ??? ??? socket:[5328]
mcDriverD 2399 root 17 ??? ??? ??? ??? socket:[5329]
mcDriverD 2399 root 18 ??? ??? ??? ??? socket:[4958]
mcDriverD 2399 root 19 ??? ??? ??? ??? socket:[4960]

Issued (signed) program

someca 2424 root exe ??? ??? ??? ??? /data/app/lta
someca 2424 root 0 ??? ??? ??? ??? /dev/ttySAC2
someca 2424 root 1 ??? ??? ??? ??? /dev/ttySAC2
someca 2424 root 2 ??? ??? ??? ??? /dev/ttySAC2
someca 2424 root 3 ??? ??? ??? ??? /dev/log/main
someca 2424 root 4 ??? ??? ??? ??? /dev/log/radio
someca 2424 root 5 ??? ??? ??? ??? /dev/console
someca 2424 root 6 ??? ??? ??? ??? anon_inode:dmabuf
someca 2424 root 7 ??? ??? ??? ??? anon_inode:dmabuf
someca 2424 root 8 ??? ??? ??? ??? /dev/log/events
someca 2424 root 9 ??? ??? ??? ??? /dev/log/system
someca 2424 root 10 ??? ??? ??? ??? socket:[4957]
someca 2424 root 11 ??? ??? ??? ??? /dev/__properties__ (deleted)
someca 2424 root 12 ??? ??? ??? ??? /dev/mobicore-user
someca 2424 root 13 ??? ??? ??? ??? socket:[4959]
someca 2424 root mem ??? b3:03 0 26948 /data/app/lta
someca 2424 root mem ??? b3:03 16384 26948 /data/app/lta
someca 2424 root mem ??? b3:03 20480 26948 /data/app/lta

/dev/mobicore-user
User driver

/dev/mobicore
Control driver

Actual policy left as an exercise
One real-world policy for this setup, with
support for virus checkers, file management,
backups etc. has

6 types
852 allow rules

In the exercises you will get, one task is to
define a policy for a set-up close to the one
above. Simpler, of course...

As the multitude of classes and permissions makes policy
writing ”by hand” tedious and error-prone, Google/Android
has introduced a macro expansion tool, described next...

Google Policy Macros

##
trusted execution environment (tee) daemon
#
type tee, domain;
type tee_exec, exec_type, file_type;
type tee_device, dev_type;
type tee_data_file, file_type, data_file_type;
init_daemon_domain(tee)
allow tee self:capability { dac_override };
allow tee tee_device:chr_file rw_file_perms;
allow tee tee_data_file:dir rw_dir_perms;
allow tee tee_data_file:file create_file_perms;
allow tee self:netlink_socket create_socket_perms;

tee.te

/dev/tf_driver u:object_r:tee_device:s0
/system/bin/tf_daemon u:object_r:tee_exec:s0

file_contexts

An m4. macro set for
representing common
rule patterns in a a more
readable format

tee.te
allow tee tee_data_file : dir rw_dir_perms;
allow tee tee_data_file : file create_file_perms;

global_macros
define(`rw_file_perms', `{ r_file_perms w_file_perms }')
define(`create_file_perms', `{ create setattr rw_file_perms link_file_perms }')

define(`r_file_perms', `{ getattr open read ioctl lock }')
define(`w_file_perms', `{ open append write }')
define(`link_file_perms', `{ getattr link unlink rename }')

access_vectors

// contains a meta-definition of classes and their relations
// for validating the macro expansion?

Recursion and relations between policy files

Contains template rules for some ’special’ operations

te_macros

define(`domain_trans', `
Old domain may exec the file and transition tonew domain.
allow $1 $2:file { getattr open read execute };
allow $1 $3:process transition;
New domain is entered by executing the file.
allow $3 $2:file { entrypoint open read execute getattr };
New domain can send SIGCHLD to its caller.
allow $3 $1:process sigchld;
Enable AT_SECURE, i.e. libc secure mode.
dontaudit $1 $3:process noatsecure;
allow $1 $3:process { siginh rlimitinh };
')

define(`domain_auto_trans', `
Allow the necessary permissions.
domain_trans($1,$2,$3)
Make the transition occur by default.
type_transition $1 $2:process $3;
')

Similar macros exit for file type transition (based on e.g. dir), binder use (NEW),
and special cases like DRM and debugging

Looking at things

https://android.googlesource.com/platform/
external/sepolicy/+/master

The ”master” SEAndroid branch

/sepolicy , /file_contexts ... on
most Android 4.4 or 5 phones

Google strongly recommends that the policy
files are kept in the root directory of the phone. However alternative locations
sometimes apply, especially if the policy is dynamically updatable
(http://seandroid.bitbucket.org/PolicyUpdates.html)

Tools for parsing the binary ’sepolicy’
The apol GUI (https://github.com/TresysTechnology/setools3/wiki)
seinfo / sesearch tools in setools (Ubuntu) package

E.g. sesearch –allow sepolicy gives a nice textual dump of all the allow rules
in the provided policy. seinfo –x –t sepolicy gives a list of types and parent attributes

http://www.freetechbooks.com/efiles/selinuxnotebook/The_SELinux_Notebook_The_Foundations_3rd_Edition.pdf
SELinux Notebook

https://github.com/TresysTechnology/setools3/wiki

1) SEAndroid is a ”tweaked” SELinux, with increased functionality
especially for middleware (like the VM)

2) Earlier MAC systems in user devices include Symbian
capabilities and CentOS SELinux. Android 4.4-> SEAndroid is
destined to become the most widespread and complex MAC
ever deployed on consumer devices.

3) SEAndroid policies are inevitably complex and writing them
requires an understanding of both the target environment AND
the policy framework simultaneously.

Executive reference
http://events.linuxfoundation.org/images/stories/pdf/lcna_co2012_smalley.pdf

Final words (if any)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	SecComp as the ”next level of access control”�-- Android O forward – all apps have a seccomp filter
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

