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Motivation
• Why learn about sprays ?

• Sprays are used in many industrial applications: engines (diesel & 
gasoline), furnaces, gas turbines, rockets and in many other 
applications: aerosols, water taps…

• Therefore, understanding concepts related to sprays might be beneficial
• This lesson is about sprays: general topics of sprays in order to better 

understand what sprays are and how they form and interact with their 
surroundings
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Wehrfritz et al., Comb. Flame 2016.

Course related phenomena



Optical Spray Investigations

· Pictures by Harri Hillamo, 2010
· Fuel injection pressure is 1400bar
· Gas density is 35 kg/m3
· Nozzle diameter d=0.34mm
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What does a fuel spray look like ?
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Nozzle hole (0.34 mm)

Nozzle tip
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Spray Angle
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Spray penetration & opening angle

opening
angle

Hillamo et al., 2010.

nozzle
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Dent (1971)

Hiroyasu & Kadota 
(1980)
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Hillamo et al., SAE 2008

Spray penetration & 
opening angle

Opening angle

Heywood, 1988
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Nozzle types

Engines:
hole diameter
D ~ 0.1-0.5mm

Furnaces:
diameter ~ 1m



Some liquid fuel properties

Fuel HVO
Fischer-
Tropsch
diesel

FAME 
(RME) EN 590

Density at +15C° (kg/m3) 775-785 770-785 885 835

Viscosity at +40C° (mm2/s) 3.0-3.5 3.2-4.5 4.5 3.5

Cetane number 80-99 73-81 51 53

Distillation range (C°) 180-320 180-360 350-370 180-360

Heating value (MJ/kg) 44 43 37.5 43
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Fuel Methanol DME

Density at +15C° (kg/m3) 722.1 612

Viscosity at +40C° (mm2/s) 0.45 0.22

Cetane number ~ 5 55

Heating value (MJ/kg) 22.7 29
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Some liquid fuel properties



Y. Gong et al., SAE 2010.

HEP = Heptane (C7 H16)
DF2= U.S. Diesel fuel
EN590=Standard Diesel in EU
HVO=Hydrotreated vegetable oil

Some liquid fuel properties



Topics on Spray Velocity



Sprays are pressure driven

Cavitation
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Cavitation



Sprays are pressure driven

Calculating the theoretical fuel exit velocity 

• Theoretical fuel exit velocity from nozzle 

· Velocity in practice 
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Discharge coefficient Cd
· Discharge coefficient

avd CCC 

aC

‘velocity coefficient’, used when calculating real 
injection velocity 

dC

vC

used when calculating mass flow 

‘area contraction coefficient’, used when 
calculating effective nozzle hole diameter  
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Intact Liquid Core

Additional material



Intact liquid core ?

Smallwood, G., and Gulder, O., Atom & sprays, 2000. OK/Aalto 2019

Additional material



Intact liquid core ?
Hillamo et al. 2010, Atom. Sprays

6dn

or 
2mm

Reynolds number compared to real high-pressure sprays.
DNS done with Uexit~100m/s

Desjardins et al, 2010

Chesnel et al. 2011
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Additional material



Intact liquid core ?

· Turbulence inside the nozzle
has bigger effect than
previously thought of.

· Taken the experimental and 
numerical evidence, it seems
very likely that in modern
high-pressure injection
systems, the intact liquid core
is either very short or even
non-existent.

Desjardins et al, 2013, Atom. Sprays
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Additional material



Spray Equations



Lagrangian spray modeling
· Discrete computational points are tracked

· Spray equations (Ordinary differential equation (ODE)):

– Parcel position

– Eq. (1) can be used to calculate the particle
position at each time instant.

p
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

 (1)
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Droplet position, ௣



Lagrangian spray modeling

• Parcel equation of motion maF 


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Lagrangian spray modeling

or

Eq. (2) can be used to update the particle velocity for 
each time instant, and then use Eq. (1) to update the 
position.     
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Droplet drag coefficient
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· The resistance a droplet/particle encounters, is due to 

shear and form drag
· Droplet drag coefficient Cd is calculated from
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Boiko et al., 2013
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Lagrangian spray modeling 
(Matlab)

Constant Cd=0.424 and 
constant gas phase 
velocity (0 m/s)

Droplet size is constant 
d=100micro-m

Gas density is 2 kg/m3 
and liquid density is 
800kg/m3. 

Constant gas phase velocity
may be a strong assumption.
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Dispersed and 
continuous phase

coupling



Stokes number

• Stokes number

• Ratio of the characteristic particle time scale (or
the momentum relaxation time scale)

• To the characteristic flow time scale
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Stokes number & Turbulent dispersion

Figure by G. Stiesch
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Coupling regimes

Figure by Elghobashi, 1994.

One-way coupling Gas phase only interacts with
particles

Two-way coupling Gas phase and particles both
interact with each other

Four-way couplingAdditionally, particles interact
with each other
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· If Particles will have plenty of time to adjust to 
changes in flow field velocity. Particle and fluid 
velocities nearly equal.

· If Particle velocity will be little affected by flow 
velocity.

Stokes number

St number

effect St ~ 
೒

Kaario, 2012
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Source term in N-S Eqs.
· The flow field ’sees’ the droplets via source terms in 

the N-S eqs. In the 2-way coupling regime, the source 
term Md accounts for the coupling. Droplets ’see’ the 
flow field effect from the velocity difference.
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Group Work
Discuss in pairs for about 10 min:

1. What information is needed to calculate droplet/particle 
Stokes number ? 

2. What information is not needed ?
3. What does a particle St number mean ?
4. If you would be given a task to design a spray 

configuration that would give a homogeneous mixture (of 
droplets and air / vapor and air), what kind of a St number 
would you aim for and why ?
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What is dense ?



What is dense ?
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· Typically assumed dense if Vp/Vf > 10-3

· Assuming spray mass is divided homogenously in a 
cone –like volume

· From the schematic spray opening angle picture, the 
area ratio: 
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What is dense ?
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Nozzle Hole Size vs Average Fuel 
Concentration

· Average concentration

· Assumed constant injection rate

· The spray volume evolves as a cone

· Bottom area of the cone 

· Spray penetration assumes well known correlation

· We obtain  
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Additional material



Nozzle Hole Size vs Average Fuel 
Concentration
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Additional material



Turbulence in flow
· Turbulent flow consists of vortices (eddies) of different size
· The biggest vortices are of the size of the flow geometry
· The eddies are breaking up into smaller eddies. At the same 

time kinetic energy is transported from the bigger eddies to 
smaller ones

· At the smallest turbulent scale (Kolmogorov scale) kinetic 
energy is dissipated into heat

· Fluctuations
· Convection



Turbulence in flow

· Turbulence  Shear
· Turbulence is characterized by the following:

– Three dimensional
– Unsteady
– Random
– Strong vorticity
– Dissipative
– Strongly diffusive

Turbulence = increased mixing !
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Jet development

Potential core

~ 4-6D
Developing flow

~15-20D Self-preserving 
flow

D

Nozzle

Potential core
Mixing area Developing flow Self-preserving flow
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Jet development: 
Kelvin Helmholtz Instability and 
Spray Mixing

· Spray and jet turbulence is 
initiated by a Kelvin Helmholtz
instability at the near nozzle
region

· Growth rate of KH instability 
is related to the velocity 
difference of the fluids and to 
the wavelength.
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KH Instability
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KH Instability and Mixing

Figure V. Vuorinen
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