

CS-E4530 Computational Complexity Theory

Lecture 13: Approximation

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Optimisation Problems
- Approximation Algorithms
- PTAS and FPTAS
- Hardness of Approximation
- On the PCP Theorem

Solving Hard Problems: Approximation

There are intractable problems that we don't know how to solve in polynomial time

How to deal with such problems in practice?

Today's concept: approximation

- Basic idea: instead of looking for the best solution, look for a fairly good solution
- When does this this help?

Optimisation Problems

Definition

An optimisation problem Π is defined by

- a set of *valid instances* $I \subseteq \{0,1\}^*$,
- a set of *feasible solutions* $F(x) \subseteq \{0,1\}^*$ for all valid instances $x \in I$,
- an integer *cost* c(s) for all feasible solutions $s \in F(x)$, and
- a *goal function*, which is either min or max.

• Task is to compute optimal solution:

- *Maximisation:* OPT $(x) = \max_{s \in F(x)} c(x)$
- Minimisation: $OPT(x) = \min_{s \in F(x)} c(x)$

NP Optimisation Problems

Definition

An optimisation problem Π is an *NP optimisation problem (NPO)* if it holds that

- there is a constant c > 0 such that for all x ∈ I and s ∈ F(x), we have |s| = O(|x|^c),
- languages $\{x: x \in I\}$ and $\{(x,s): s \in F(x)\}$ are decidable in polynomial time, and
- the function $s \mapsto c(s)$ is computable in polynomial time.

We restrict our attention to NP optimisation problems

Covering Problems

Example (Vertex Cover)

- Instance: Graph G = (V, E).
- Feasible solution: A vertex cover $C \subseteq V$.
- Objective: minimise c(C) = |C|

Example (Set Cover)

- Instance: A finite set *U* and a family $S = \{S_1, S_2, \dots, S_m\}$ of subsets of *U*.
- Feasible solution: A subfamily $\mathcal{T} \subseteq S$ such that any element $u \in U$ is contained in at least one set $T \in \mathcal{T}$?

• Objective: minimise
$$c(\mathcal{T}) = |\mathcal{T}|$$

Travelling Salesman Problem

Example (TSP)

- Instance: An undirected/directed weighted graph G = (V, E, w).
- Feasible solution: A tour $T = (v_1, v_2, ..., v_n)$ visiting all vertices once.
- **Objective:** minimise $c(T) = \sum_{i=1^n} w(v_i, v_{i+1 \mod n})$.

Approximation Algorithms

Definition (Approximation algorithm)

Let Π be an optimisation problem. For $\alpha > 1$, we say that M is a *polynomial-time* α *-approximation algorithm* if M runs in polynomial time,

- for all $x \in I$, we have $M(x) \in F(x)$, and
- for all $x \in I$, we have $(1/\alpha) \operatorname{OPT}(x) \le c(M(x)) \le \alpha \operatorname{OPT}(x)$.
- Maximisation: $(1/\alpha)$ OPT $(x) \le c(M(x)) \le$ OPT(x)
- Minimisation: $OPT(x) \le c(M(x)) \le \alpha OPT(x)$
- Notations may wary between sources:
 - e.g. $1/\alpha$ -approximation instead

2-approximation for Vertex Cover

Approximation algorithm for vertex cover

Input: graph G = (V, E), Output: vertex cover C

- Start from $C = \emptyset$
- Select arbitrary edge $\{u, v\} \in E$
- Add *u* and *v* to *C*, remove *u*, *v* and all incident edges from the graph
- Repeat until no edges remain
- This is a 2-approximation algorithm:
 - ► Let C' be an optimal vertex cover
 - For any edge {u, v} selected by the algorithm, at least one of u and v must be in C'

• Thus,
$$c(C) \leq 2c(C') = 2 \operatorname{OPT}(G)$$

O(log n)-approximation for Set Cover

Approximation algorithm for set cover

Input: set family ${\mathcal S}$ over U, Ouput: set cover ${\mathcal T}$

- Start from $T = \emptyset$
- Find the set $S \in \mathcal{S}$ that covers most uncovered elements in U
- Add S to T
- Repeat until all elements of U are covered
- Let u_1, u_2, \ldots, u_n be the order in which the algorithm covered the elements of U
 - Assume that u_i was covered by a set $T \in S$ picked by the algorithm, and that T covered a uncovered elements
 - We define the cost of u_k as $c(u_k) = 1/a$

O(log n)-approximation for Set Cover

Lemma

We have $c(u_k) \leq \operatorname{OPT}/(n-k+1)$.

- **Proof:** Consider the iteration when *u_k* was covered
 - ► Let *C* denote the covered elements at the beginning of the iteration

 - Since u_k was covered in this iteration, we had $|U \setminus C| \ge n k + 1$
 - Since we picked the set that covered most elements, we have

$$c(u_k) \le \frac{\text{OPT}}{|U \setminus C|} \le \frac{\text{OPT}}{n-k+1}$$

O(log *n*)-approximation for Set Cover

• We have
$$|\mathcal{T}| = \sum_{k=1}^{n} c(u_k)$$

• By previous lemma, we have

$$\sum_{k=1}^{n} c(u_k) \le \sum_{k=1}^{1} \frac{\text{OPT}}{n-k+1} = \text{OPT}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

• Fact:
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \le \ln n + 1$$
.
• Thus, $|\mathcal{T}| \le (\ln n + 1)$ OPT

Polynomial-time Approximation Schemes

Definition (PTAS)

Let Π be an optimisation problem. We say that *M* is a *polynomial-time approximation scheme* (*PTAS*) if for all $\varepsilon > 0$,

- for all $x \in I$, we have $M(x, \varepsilon) \in F(x)$, and
- for all $x \in I$, we have

 $(1-\varepsilon) \operatorname{OPT}(x) \le c(M(x,\varepsilon)) \le (1+\varepsilon) \operatorname{OPT}(x),$

and $M(x,\varepsilon)$ runs in time $p_{\varepsilon}(|x|)$ time, where p_{ε} is a polynomial that only depends on ε .

- PTAS allows trading time for accuracy
- Dependence on ϵ can be very large
- Example: Euclidean TSP has a PTAS

Fully Polynomial-time Approximation

Definition (FPTAS)

Let Π be an optimisation problem. We say that *M* is a *fully* polynomial-time approximation scheme (FPTAS) if for all $\varepsilon > 0$,

• for all $x \in I$, we have $M(x, \varepsilon) \in F(x)$, and

• for all
$$x \in I$$
, we have

$$(1-\varepsilon)$$
 OPT $(x) \le c(M(x,\varepsilon)) \le (1+\varepsilon)$ OPT (x) ,

and $M(x, \varepsilon)$ runs in time $p(|x|, 1/\varepsilon)$ time, where p is a polynomial.

• Example: Knapsack has an FPTAS

Hardness of Approximation

Which NP-complete problems are easy to approximate?

- Do all NP-complete problems have a PTAS or FPTAS?
- FPTAS is almost as good as polynomial-time algorithm
- Can prove ad-hoc inapproximability results
- Can also define complexity classes related to approximation and prove hardness
 - FPTAS: problems with FPTAS
 - PTAS: problems with PTAS
 - APX: problems with constant-factor approximation
- However, proving inapproximability results is very difficult with the tools we have seen so far

Example: TSP

Theorem

TSP cannot be α -approximated for any constant $\alpha > 1$ unless P = NP.

- **Proof:** consider the following reduction from Hamiltonian cycle instance G = (V, E):
 - The TSP instance is a complete graph G' = (V, E')
 - ► Edge $e \in E'$ has weight 1 if $e \in E$, and weight $\alpha |V|$ otherwise
 - If G has Hamiltonian cycle, then G' has TSP tour with weight |V|
 - If G does not have Hamiltonian cycle, then the minimim TSP tour in G' has weight > α |V|
 - An α -approximate algorithm can tell these two cases apart

Example: TSP

Example (Symmetric Metric TSP)

• **Instance:** A complete undirected graph G = (V, E, w) with a weight function satisfying the triangle inequality

 $w(u,v) \leq w(u,w) + w(w,v) \qquad \text{for all } u,v,w \in V.$

- Feasible solution: A tour $T = (v_1, v_2, ..., v_n)$ visiting all vertices once.
- **Objective:** minimise $c(T) = \sum_{i=1^n} w(v_i, v_{i+1 \mod n})$.
- Symmetric metric TSP has 3/2-approximation algorithm [Christofides 1976]
- Symmetric metric TSP cannot be approximated with factor *c* for any *c* < 123/122 unless P = NP [Karpinski, Lampis & Schmied 2015]

PCP Theorem

• *PCP theorem* is the one of the great celebrated results in theoretical computer science

Central tool for inapproximability results

What does the PCP theorem say?

- Verification view: every language in NP has a verifier that can verify the correctness of a certificate with constant number of queries
- Hardness of approximation view: MAX-3SAT cannot be approximated within arbitrarily good constant

PCP: Verification View

Definition (Restricted verifiers)

- An (r(n), q(n))-restricted verifier is a polynomial-time probabilistic Turing machine V that takes as an input a string $x \in \{0, 1\}$ and has a random access to a proof y of length at most $q(n)2^{r(n)}$ such that
 - V uses at most r(n) random bits, and
 - V queries at most q(n) symbols of y.
- Given a random bit string z of at most r(n) bits, the verifier V:
 - (1) computes Q(x,z), a set of $k \le q(n)$ indices,
 - (2) chooses k symbols y₁,..., y_k from y according to indices in Q(x,z), and
 - (3) outputs 1 or 0 depending on x, z, and (y_1, \ldots, y_k) .

PCP: Verification View

Definition (Probabilistically checkable proofs (PCP))

We say that a language $L \subseteq \{0,1\}^*$ is in class PCP(r(n),q(n)) if there is a (O(r(n)),O(q(n)))-restricted verifier V such that

- if $x \in L$, then there is a proof $y \in \{0, 1\}^*$ such that $\Pr[V(x, y) = 1] = 1$, and
- if $x \notin L$, then for all proofs $y \in \{0,1\}^*$ we have $\Pr[V(x,y) = 1] \le 1/2$.

Theorem (The PCP theorem (Arora & Safra 1992)) $NP = PCP(\log n, 1).$

PCP: Hardness of Approximation View

Example (MAX-3SAT)

- Instance: A CNF formula φ with at most 3 literals per clause
- Feasible Solution: An assignment *x* into variables of φ
- Objective: maximise c(x), where c(x) is the number of clauses of φ satisfied by x

PCP: Hardness of Approximation View

Theorem (The PCP theorem, alternative form)

There is a constant $\alpha > 1$ such that there is no α -approximation algorithm for MAX-3SAT, unless P = NP.

Theorem (Håstad 1997)

There is no $(8/7 - \epsilon)$ -approximation algorithm for MAX-3SAT for any $\epsilon > 0$, unless P = NP.

Inapproximability from PCP Theorem

Theorem

There are constants $\alpha, \alpha' > 1$ such that maximum independent set cannot be α -approximated and minimum vertex cover cannot be α' -approximated unless P = NP.

Proof sketch:

- Apply the standard reduction from 3SAT to maximum independent set
- Observe that the size of the independent sets in the resulting graph is connected to the maximum number of satisfiable clauses in the original formula

Inapproximability from PCP Theorem

Theorem

Maximum independent set cannot be α -approximated for any constant $\alpha > 1$ unless P = NP.

- Proof: boosting via graph products
- The PCP theorem is analogous to the Cook-Levin theorem for hardness of approximation
 - Provides a starting point for further results

Lecture 13: Summary

- Optimisation problems
- Approximation algorithms
- PTAS and FPTAS
- Inapproximability
- PCP theorem

