

Biological treatment processes of water and waste Lecture 2

WAT - E2180

Anna Mikola Professor of Practice D Sc (Tech)

Lecture outline

Introduction to biodegradability Measuring organic matter

Group discussion: Bioplastics and biodegradable plastics??

COD fractions Toxicity Introduction to biological processes Classification of bacteria *Bacteria game*

Stoichiometry Energetics Kinetics

Sumo demo

Biodegradability

- IUPAC definition: Degradation caused by enzymatic process resulting from the action of cells.
- = chemical dissolution of materials by bacteria, fungi or other biological means
 - Generally organic material that serves as a nutrient for microorganisms = almost all organic compounds are subject to degradation.. The question is HOW FAST!!

- Biosurfactants = extracellular surfactants secreted by microorganisms, enhances the biodegradation process
- Small molecules break down faster
- Xenobiotics usually break down slowly

-

Time needed for biodegradation of different compounds

Product	Time to Biodegrade	Product	Time to Biodegrade	
Paper towel	2-4 weeks	Plywood	1-3 years	
Newspaper	6 weeks	Painted wooden sticks	13 years	
Apple core	2 months	Plastic bags	10-20 years	
Cardboard box	2 months	Tin cans	50 years	
Wax coated milk carton	3 months	Disposable diapers	50-100 years	
Cotton gloves	1-5 months	Plastic bottle	100 years	
Wool gloves	1 year	Aluminium cans	200 years	
		Glass bottles	Undetermined	

Aerobic and anaerobic biodegradation

- Biodegradation can take place in aerobic or anaerobic conditions
- Aerobic = presence of O_2
- Anaerobic = absence of oxygen
- Biodegradation occurs as a result of microbial growth

	CO2 + H2O + NH2+_+ BIOMASS
Biodegradation, aerobic	andogenic expendition
	microbes O2
Organic substrate + O ₂	==> CO ₂ + H ₂ O + NH ₃ ++ BIOMASS
Biodegradation, anaerob	ic:
	microbes
Orgnic substrate	===> CO ₂ + CH ₄ + NH ₃ ++ BOOMASS
18.1.3006	Timo tauthanan

Hydrolysis

- Hydrolysis is the breakdown of a chemical bond by addition of water.
- Hydrolysis takes place when organic matter is in contact with water.
- Many microorganisms produce enzymes that catalyse the hydrolysis, e.g. proteases for proteins)

These enzymes are selective.

R₂OH

Generic mechanism for a hydrolysis reaction.

Example of a biodegradation process

The decomposition of a organic monochloro compound

Complete decomposition:

 $H_yC_xO_2Cl + (x-z/2+(y-1)/4)O_2 \rightarrow xCO_2 + (y-1)/2H_2O + H^+ + Cl^-$

Dechlorination:

 $H_v C_x O_z Cl + m O_2 \rightarrow (x-n) CO_2 + n Org.C + Cl + ...$

What to measure?

- Oxygen uptake, BOD
- Decrease of organic carbon
- · Decrease of organic chlorine
- Increase of chloride

No dechlorination:

 $H_yC_xO_2Cl + m'O_2 \rightarrow (x-n)CO_2 + n Org.C + Org.Cl + ...$

Laitoksen nimi 27.2.2019 7

4

Group discussion: Bioplastics and biodegradable plastics?

Seach for information about bioplastics and biodegradable plastics Discuss in groups what these terms actually mean Discuss about pros and cons about both

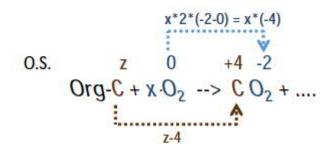
(15 – 20 min)

How do we measure organic matter

Organic matter contains all kinds of different organic substances, also living cells but ≠ biomass Organic matter = food, biomass = the ones who eat

TOC = total organic carbon, mgC/I (most common method catalytic oxidation) DOC = dissolved organic	BOD = biological oxygen demand (5 or 7 days) mg O_2/I (incubation method) COD = chemical oxygen demand
matter	ThOD = theoretical oxygen demand demand (mg O_2/g)
(NOM = natural organic matter)	SBCOD = slowly biodegradable RBCOD = readily biodegradable Etc.

Theoretical oxygen demand


- Theoretical COD is the calculated amount of oxygen needed to oxidize a compound to its final oxidation products.
- Note: some differences between standard methods on how nitrogen is dealt with.

Steps:

- 1) Calculate the carbonaceous oxygen demand in moles(based on the oxidation state of carbon)
- 2) Calculate nitrogenous oxygen demand in moles
- Calculate ThOD (gO₂/g) using molar masses

Example: Calculation of ThOD

 $4-z + x^{*}(-4) = 0 = x = (4-z)/4$

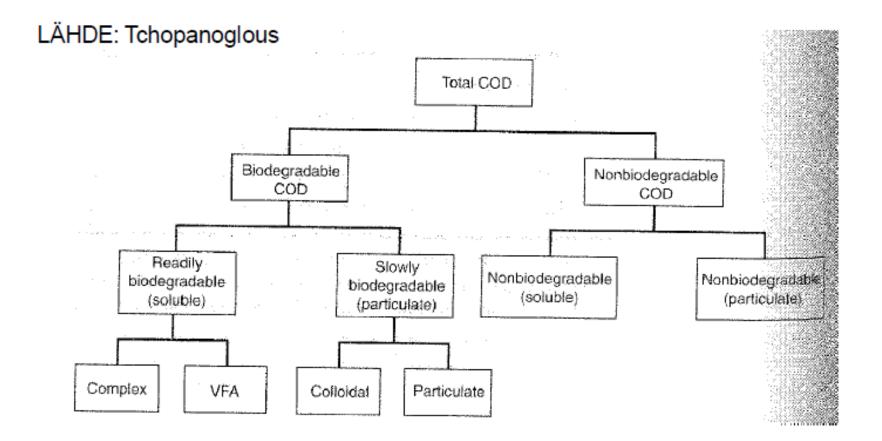
Example: Ethanol

0.5.
$$+1 z -2 0 +4 -2 + -2 = 0 => z = -2$$

 $H_5C_2OH + 2x \cdot O_2 -> 2^*C O_2 + ... => x = (4-(-2))/4 = 1\frac{1}{2}$

What is the ThOD [g-O₂/g-Ethanol]?

ThOD = 3^{2}^{16} g-O₂/mol / ($6^{1}+2^{12}+16$) g-Ethanol/mol = 2.8 g-O₂/g-Ethanol


Examples of different oxidation states of carbon

Substance		Oxidn. state of Carbon	x	ThOD g-O ₂ /g		ThOD/ TOC
Methane CH ₄	H₄C	-4	2	(4*16)/(4+12)= 2	4*16/12=	5,3
Methanol H ₃ COH	H₄CO	-2	1½	(3*16)/(4+12+16)= 11/2	3*16/12=	4
Formalin H ₂ CO	H ₂ CO	0	1	(2*16)/(2+12+16)= 1	2*16/12=	2,7
Formic acid HCOOH	H ₂ CO ₂	+2	1/2	16/(2+12+2*16)= ½	16/12=	1,3

Characterization of the organic matter

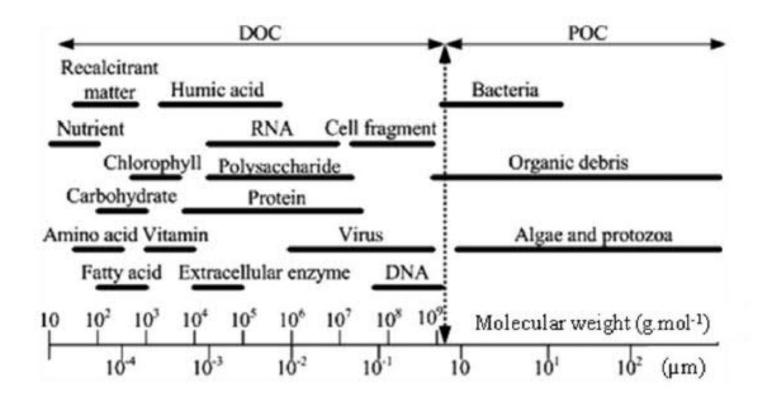


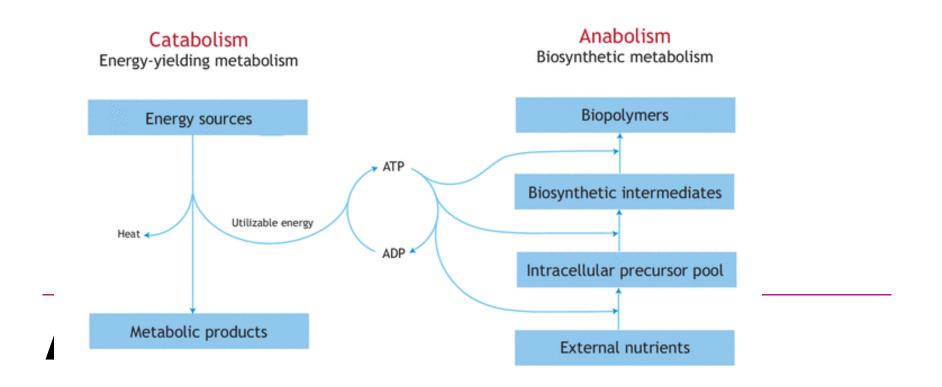
Figure 1: Organic Components in Traditional Wastewater Treatment Plant Effluent. Adapted from Shon et al. (2006).

Toxicity and inhibition

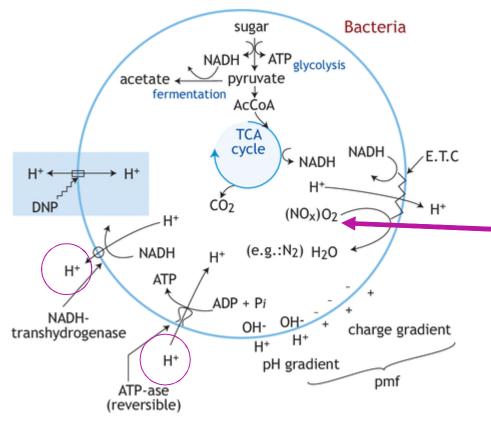
- Biological processes deal with living organisms → affected by inhibitory or toxic agents
- Inhibition = impairment of the enzymatic system or damage to cell structure
- Toxic effect = inhibition is caused to a vital activity
- Inhibition can be caused by pH, temperature, redox limitations

- A medium is not either toxic or non-toxic → it's a continuum
- Acclimatisation can be used to decrease the inhibitory effects
- Ways of measuring toxicity:
 - Respirometry
 - Bioluminescence (Vibrio fischeri)
 - Many other bioassays

Introduction to biological processes



Metabolism of living cells


Main requirements

Catabolism = energy supply of the cell (redox reaction) Anabolism = synthesis of cellular components from carbon sources and other nutrients

- \rightarrow Electron donor and acceptor
- \rightarrow Carbon source

How do bacteria obtain energy?

Figure 2.13 Overview of bacterial bioenergetics (adapted from Comeau *et al.,* 1986)

Main pathway for energy production in cells:

Glycolysis + Krebs cycle or TCA cycle -Requires an electron acceptor!

You can watch a video of the TCA cycle https://www.youtube.co m/watch?v=IV9X2K8uE YE

Classification of bacteria

Carbon source	Energy source	Relationship to oxygen	Temperature
AutotrophsHeterotrophs	 Phototrophs (Light) Lithotrophs (inorganic) Organotrophs 	AerobicAnaerobicFacultative	PsychrophilicMesophilicThermophilic
	(organic) chemical compounds	Table 2.5 Engineering de conditions	efinition of some environmenta Electron acceptor

Auto= self, hetero = others, photo = light, chemo = chemical, troph = nourishment, litho = inorganic, organo = organic

		Tresent	Absent
Aerobic	OX	O ₂	
Anoxic	AX	NO _x	O ₂
Anaerobic	AN		O_2 and NO_x

Precent

Abcent

NOx refers to nitrate (NO3) plus nitrite (NO2)

Examples of reactions

Aerobic heterotrophs: organic matter oxidation

 $C_6H_{12}O_6 + O_2 + NH_3 + other mutrients \rightarrow$ $C_5H_7O_2N + CO_2 + H_2O$ (2.1)

Denitrifiers: nitrate removal

 $C_6H_{12}O_6 + O_2 + HNO_3 + NH_3 + other \ mutrients \rightarrow C_5H_7O_2N + CO_2 + H_2O + N_2$ (2.2)

 Aerobic autotrophic bacteria (ammonia oxidizers): removal of ammonia

 $CO_2 + NH_3 + O_2 + other mutrients \rightarrow$ $C_5H_7O_2N + HNO_3 + H_2O$ (2.4)

• Hydrogenotrophic methanogens: biogas production $H_2 + CO_2 + NH_3 + other mutrients \rightarrow$ $C_5H_7O_2N + CH_4$ (2.5)

Microorganismsin water and wastewater treatment

Table 2.3 Trophic classification of microorganisms (adapted from Rittmann and McCarty, 2001; Metcalf & Eddy, 2003)

		Energy source			Carbon source1
	Electron donor		Electron acceptor	Typical products ²	
Trophic group	Microbial group	Type of e donor			
Chemotroph					
Organotroph	Aerobic heterotrophs	Organic	O ₂	CO ₂ , H ₂ O	Organic
	Denitrifiers	Organic	NO3 ⁻ , NO2 ⁻	N2, CO2, H2O	Organic
	Fermenting organisms	Organic	Organic	Organic:VFAs3	Organic
	Iron reducers	Organic	Fe (III)	Fe (II)	Organic
	Sulfate reducers	Acetate	SO4 ²⁻	H ₂ S	Acetate
	Methanogens (acetoclastic)	Acetate	acetate	CH ₄	Acetate
Lithotroph	Nitrifiers: AOB ⁴	NH_4^+	O ₂	NO ₂	CO ₂
	Nitrifiers: NOB ⁵	NO ₂	O ₂	NO ₃	CO ₂
	Anammox ⁶ bacteria	$\mathrm{NH_4}^+$	NO ₂ ⁻	N_2	CO ₂
	Denitrifiers	H ₂	NO3 ⁻ , NO2 ⁻	N ₂ , H ₂ O	CO ₂
	Denitrifiers	S	NO3 ⁻ , NO2 ⁻	N ₂ , SO ₄ ²⁻ ,H ₂ O	CO ₂
	Iron oxidizers	Fe (II)	O ₂	Fe (III)	CO ₂
	Sulphate reducers	H_2	SO4 ²⁻	H ₂ S, H ₂ O	CO ₂
	Sulphate oxidizers	H ₂ S, S ⁰ ,S ₂ O ₃ ²⁻	O_2	SO4 ²⁻	CO_2
	Aerobic hydrogenotrophs	H ₂	O ₂	H ₂ O	CO ₂
	Methanogens	H ₂	CO ₂	CH ₄	CO_2
	(hydrogenotrophic)				
Phototroph					
	Algae, plants	H ₂ O	CO_2	O ₂	CO_2
	Photosynthetic bacteria	H_2S	CO ₂	S (0)	CO ₂

¹ Carbon source: organic for heterotrophs and inorganic (CO₂) for autotrophs; mixotrophs can use both. ² Typical products: CO₂ and H₂O are products of catalysis (energy generation) by many micro-organisms. ³ VFAs: volatile fatty acids (typically acetate, propionate, butyrate). ⁴ AOB; ammonia oxidizing bacteria. ⁵ NOB; nitrite oxidizing bacteria. ⁶ Anammox; anaerobic ammonia oxidizing bacteria.

mi 19 21

Ready for BACTERIA GAME?

- Each student takes a card
- Four of you will be bacteria
- Form groups with beneficial conditions for each bacteria

Stoichiometry

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_2$ 180 g 192 g $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24e^- + 24H^+$ $\frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O \rightarrow \frac{1}{4}CO_2 + e^- + H^+$ $0.25O_2 + H^+ + e^- \rightarrow 0.5H_2O$

Important:

- Electron equivalents need to be kept
- Charge balance by adding protons
- Water for H balance

Cell growth

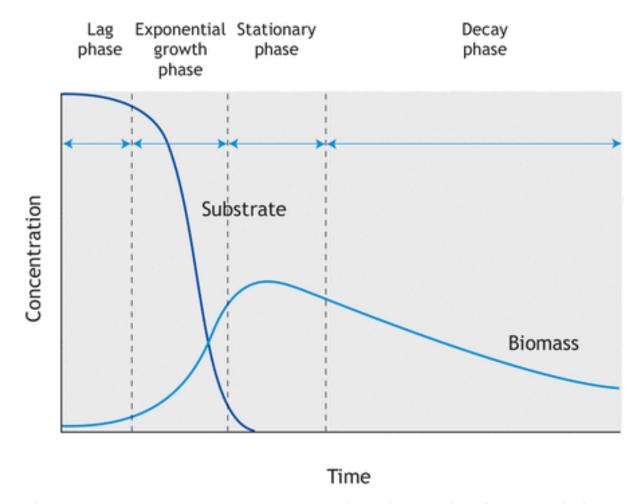


Figure 2.16 Biomass growth in batch mode (adapted from Metcalf & Eddy, 2003)

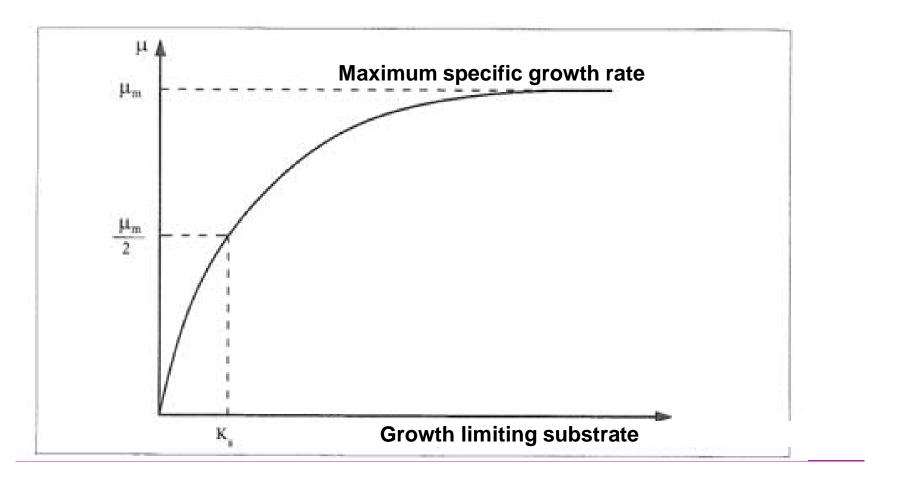
Microbial growth

Growth can be described with the equation:

$$r_{V,XB} = \mu_{max} f(S) X_B$$

Where

r_{V,XB} = growth per unit of volume and time (e.g. kgCOD/m^{3*}d)


μ_{max} = max specific growth rate (1/h or 1/d)

F(S) = growth kinetic function (depending on substrate), typically Monod

X_B = biomass concentration (kgCOD/m³ or kgVSS/m³)

Monod's kinetics

Substrate consumption

 $r_{V,S} = r_{V,B} / Y_{max}$

 Y_{max} = maximum yield (kgCOD(B)/kgCOD(S) or kgVSS(B)/kgCOD(S) Yield shows how much of the consumed substrate is transformed into new biomass in the reaction. Note also Y_{obs} which is smaller than Y_{max}

Monod kinetics

 $r_{V,XB} = \mu_{\max} \cdot \frac{S}{S + K_S} \cdot X_B$ $r_{V,S} = \frac{\mu_{\max}}{Y_{\max}} \cdot \frac{S}{S + K_S} \cdot X_B$

Monod kinetics are typically used for microbial growth

For substrate consumption (g/m³d)

For biomass growth (g/m³d)

 $\mu_{obs} = \mu_{max} S / (S + K_s) [1/d]$

Observed specific growth rate

Taking into account the growth conditions

Oxygen:

$$\mu_{obs} = \mu_{\max} \cdot \frac{S_{O2,2}}{S_{O2,2} + K_{S,O2}}$$

$$\mu_{obs} = \mu_{max} \cdot \frac{S_2}{S_2 + K_s} \cdot \frac{S_{O2,2}}{S_{O2,2} + K_{S,O2}}$$

Temperature:

$$\mu_{\max(T)} = \mu_{\max(20^\circ C)} \cdot e^{K(T-20)}$$

Typical values for stoichiometric and kinetic parameters

Table 2.9 Typical values of stoichiometric (f_{s}° , Y) and kinetic (q_{max} , μ_{max}) parameters for various bacterial groups, (adapted from Rittmann and McCarty 2001)

Electron donor		Electron acceptor	${f_S}^0$	Y	μ_{max}	K
Microbial group	e ⁻ donor					
Chemotrophic organotroph	IS					
Aerobic heterotrophs	Sugar	O ₂	0.70	0.49 gVSS/gbCOD	13.2	27.0 g bCOD/gVSS.d
Aerobic heterotrophs	No sugar	O_2	0.60	0.42 gVSS/gbCOD	8.4	17.0 g bCOD/gVSS.d
Denitrifiers	Organic	NO3, NO2	0.50	0.25 gVSS/gbCOD	4.0	16.0 g bCOD/gVSS.d
Fermenting organisms	Sugar	Organic	0.18	0.18 gVSS/gbCOD	1.2	10.0 g bCOD/gVSS.d
Sulphate reducers	Acetate	SO42-	0.08	0.057 gVSS/gbCOD	0.5	8.7 g bCOD/gVSS.d
Methanogens (acetoclastic)	Acetate	Acetate	0.05	0.035 gVSS/gbCOD	0.3	8.4 g bCOD/gVSS.d
Chemotrophic lithotrophs						
Nitrifiers : AOB	NH4 ⁻	O ₂	0.14	0.34 gVSS/gNH ₄ -N	0.9	2.7 g NH ₄ -N /gVSS.d
Nitrifiers :NOB	NO ₂ ⁻	O_2	0.10	0.08 gVSS/gNO2-N	0.5	1.1 g NO2-N/gVSS.d
Methanogens (hydrogenotrophic)	H ₂	CO ₂	0.08	0.45 gVSS/gH_2	0.3	1.1 g H ₂ /gVSS.d

Occurence of biological processes in water and wastewater systems

Networks:

- Drinking water pipes
 - Consumption of NOM
 - Implications of e.g. dosing of desinfectants

• Sewer system

 Biofilms allow longer retention time in the sewer for bacteria and for substrates

Drinking water:

- Some processes
- Removal of organic matter
- Removal of e.g. pesticides

Wastewater treatment

- Most common and most feasible process for removal of soluble organic matter and nitrogen
- Several different processes and configurations

