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Lecture 6 overview

Variational inference overview

KL-divergence

Mean-field variational inference

Simple example using variational inference

Suggested reading: Bishop: Pattern Recognition and Machine
Learning

p. 461-474
simple_vb_example.pdf for the derivation of the VB updates for a
simple GMM.
The general VB formulation for GMMs p. 474-486 (optional)
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Approximate inference

A central task in probabilistic modeling is to evaluate the posterior
distribution

p(Z |X )
of latent variables Z given the observed variables X .
In a fully Bayesian model, model parameters θ may be given priors
and included as part of Z (unlike in the EM).

Often, computation of p(Z |X )
may not be possible in a closed
form, and approximations are
needed

variational inference (today)
stochastic variational
inference (later)
sampling (→Bayesian data
analysis)
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Variational inference

Idea: Approximate the posterior distribution of unknowns p(Z |X )
with a tractable distribution q(Z ).

For example, q(Z ) may be assumed to have a simple form, e.g.,
Gaussian, or to factorize in a certain way.

For the GMM, it would be suffi cient to assume

q(z,π,Λ, µ) = q(z)q(π,Λ, µ)
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Basis of variational inference

When q(z) is an approximation for p(z|x), it is always true that

log p(x) = L(q) +KL(q||p),

where

L(q) =
∫
q(z) log

{
p(x, z)
q(z)

}
dz (lower bound for log p(x))

KL(q||p) = −
∫
q(z) log

{
p(z|x)
q(z)

}
dz (KL-divergence btw q and p).

Goal: to maximize L(q) or, equivalently, to minimize the KL(q||p).
Note: L(q) is also called the ’ELBO’(evidence lower bound)
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Variational Gaussian approximation

Figure shows approximation of the original distribution (yellow) with a
Gaussian at the mode (red, Laplace) or with a Gaussian that
minimizes the KL-divergence (green).
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Kullback-Leibler divergence

KL-divergence. For two distributions q(x) and p(x)

KL(q|p) ≡
∫
x
q(x) log

q(x)
p(x)

dx

KL(q|p) ≥ 0 (follows from Jensen’s inequality)
KL(q|p) = 0 if and only if q = p
KL-divergence between q and p can be thought of as a ’distance’of p
from q. However, KL(q|p) 6= KL(p|q). Hence it’s rather called
’divergence’.
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Kullback-Leibler divergence - Example
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Mean-field variational Bayes

Mean-field variational Bayes: assume that the approximating
distribution q factorizes according to M disjoint groups of z

q(z) =
M

∏
i=1
qi (zi )

Distributions q(zi ) are called factors
NB: above z is a generic notation for all unobserved variables in the
model, and comprises both parameters (e.g. π,Λ, µ in a GMM) and
latent variables (e.g. cluster labels z in a GMM!)
For example, assuming:

q(z,π,Λ, µ) = q(z)q(π,Λ, µ)

leads to a tractable solution for the posterior p(z,π,Λ, µ|x) of a
GMM.
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Mean-field variational Bayes updates

Assume some current values for all factors qi (zi )
It can be shown (p. 465-466) that by keeping other factors qi (zi )
fixed for i 6= j , the lower bound L(q) of log p(x) can be mazimized
(or KL(q||p) minimized) by updating factor qj (zj ) using

log q∗j (zj ) = Eq(z\j ) [log p(x, z)] + const.

Here q(z\j ) is a short-hand for ∏i 6=jqi (zi )
Important formula, as it forms the basis of deriving VB algorithms
using factorized distributions

Algorithm: update each factor in turn until convergence
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Mean-field VB in practice (1/2)

Assume a factorization, e.g., q(z,π,Λ, µ) = q(z)q(π)q(Λ, µ)
Write the log of the joint distribution

log p(x, z, µ,Λ,π) = log p(x|z,Λ, µ) + log p(µ|Λ)
+ log p(z |π) + log p(Λ) + log p(π)
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Mean-field VB in practice (2/2)

When updating a certain factor, for example q(z), we identify terms
in the log of the joint distribution that depend on z, and compute
their expectation over other unobserved variables

log q∗(z) = Eq(π)q(Λ,µ) [log p(x, z, µ,Λ,π)] + const

= Eq(Λ,µ) [log p(x|z,Λ, µ)] + Eq(π) [log p(z|π)] + const

Finally, we exponentiate and normalize to give the updated q∗(z)

q∗(z) =
exp

(
Eπ,Λ,µ [log p(x, z, µ,Λ,π)]

)∫
exp

(
Eπ,Λ,µ [log p(x, z, µ,Λ,π)]

)
dz

If conjugate priors are used, this belongs to the same family as the
prior.

Notation: instead of Eq(π,Λ,µ) we may simply use Eπ,Λ,µ or just E .
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Idea of derivation of the mean-field VB update*

Assume just two hidden variables z1 and z2 and
q(z1, z2) = q1(z1)q2(z2). Then

L(q) =
∫
q(z) log

p(x , z)
q(z)

dz =
∫
q1(z1)q2(z2) log

p(x , z1, z2)
q1(z1)q2(z2)

dz1dz2

= · · · =
∫
q1(z1) log

p̃(x , z1)
q1(z1)

dz1 + const = −KL(q1, p̃) + const,

where p̃(x , z1) is a distribution defined by

log p̃(x , z1) = Eq2(z2)[log p(x , z1, z2)] + const.

We see that L(q) is maximized w.r.t. to q1 when KL(q1, p̃) is
minimized, i.e. when

q1(z1) = p̃(x , z1).
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Simple example

Model: assume that we have observations x = (x1, . . . , xN ) s.t.

p(xn |θ, τ) = (1− τ)N(xn |0, 1) + τN(xn |θ, 1)

Prior:
τ ∼ Beta(α0, α0) θ ∼ N(0, β−10 )

Formulation using latent variables z = (z1, . . . , zn):

p(z|τ) = ∏N
n=1τ

zn2(1− τ)zn1

p(x|z, θ) = ∏N
n=1N(xn |0, 1)zn1N(xn |θ, 1)zn2

simple_vb_example.pdf, and the next exercise.
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Mean-field VB for the general GMM*

Bishop, Fig 2.5

Dirichlet(π|α0) prior on mixture coeffi cients with α0 < 1 favors
sparse solutions →some components remain empty, with
corresponding parameters µk ,Λk following prior distributions

Avoids overfitting and singularities present in the EM algorithm.
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Properties of factorized approximations (1/2)

Green: p(z|x), red: q(z)
Left: q that minimizes KL(q||p)
Right: q that minimizes KL(p||q)

→variational approximation (left) underestimates uncertainty.
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Properties of factorized approximations (2/2)

Blue: p(z|x), red: q(z)
Left: q that minimizes KL(p||q)
Center: q represents a local minimum of KL(q||p)
Right: q represents another local minimum of KL(q||p)

→variational approximation usually captures only a single mode.
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Variational lower bound (ELBO)

The derivation of the VB algorithm was based on minimizing
KL(q||p) in

log p(x) = L(q) +KL(q||p)
When conjugate priors and exponential family distributions are used,
we can compute the variational lower bound L(q) directly

L(q) =
∫
q(z) log

{
p(x, z)
q(z)

}
dz

Computing L(q) gives:
1 alternative way to define the factor updates by maximizing L(q).
2 simple check of the algorithm - L(q) should never decrease.
3 criterion to monitor convergence.
4 an estimate of log p(x) to be used in model selection
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Computing the lower bound in practice

For the GMM

L=E [log p(x, z,π, µ,Λ)]− E [log q(z,π, µ,Λ)]
= E [log p(x|z,π, µ,Λ)] + E [log p(z|π)]
+ E [log p(π)] + E [log p(µ,Λ)]
− E [log q(z)]− E [log q(π)]− E [log q(µ,Λ)] ,

where we have used

p(x, z,π, µ,Λ) = p(x|z,π, µ,Λ)p(z|π)p(π)p(µ,Λ) and

q(z,π, µ,Λ) = q(z)q(π)q(µ,Λ)

All of these can be computed in a closed form.
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Important points

Variational Bayes aims to find a tractable approximation q(z) for the
posterior distribution p(z|x).
q(z) is found by maximizing the ELBO L(q) or, equivalently, by
minimizing KL(q||p).
Mean-field VB: if q(z) = ∏M

i=1qi (zi ), factor qj (zj ) can be updated
using

log q∗j (zj ) = Eq(z\j ) [log p(x, z)] + const.

Variational approximation for a fully Bayesian model with prior
distributions avoids some of the problems related to the ML
estimation of the GMM (overfitting, singularities).
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