Example of the variational approximation for the course Machine Learning: Advanced Probabilistic Methods (2015), P.Marttinen

Suppose that we have N independent observations $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ from a two-component mixture of univariate Gaussian distributions

$$
\begin{equation*}
p\left(x_{n} \mid \theta\right)=(1-\tau) N\left(x_{n} \mid 0,1\right)+\tau N\left(x_{n} \mid \theta, 1\right) \tag{1}
\end{equation*}
$$

that is, with probability $1-\tau$ the observation x_{n} is generated from the first component $N\left(x_{n} \mid 0,1\right)$, and with probability τ from the second component $N\left(x_{n} \mid \theta, 1\right)$. The model (1) has two unknown parameters, (τ, θ), the mixture coefficient and the mean of the second component.

Our goal is to carry out a fully Bayesian analysis using the mean-field variational Bayes approximation. We place the following priors on the unknown parameters

$$
\begin{aligned}
\tau & \sim \operatorname{Beta}\left(\alpha_{0}, \alpha_{0}\right) \\
\theta & \sim N\left(0, \beta_{0}^{-1}\right)
\end{aligned}
$$

We formulate the model using latent variables $\mathbf{z}=\left(z_{1}, \ldots, z_{N}\right)$ which explicitly specify the component responsible for generating observation x_{n}. In detail,

$$
z_{n}=\left(z_{n 1}, z_{n 2}\right)^{T}= \begin{cases}(1,0)^{T}, & \left(x_{n} \text { is from } N\left(x_{n} \mid 0,1\right)\right) \\ (0,1)^{T}, & \left(x_{n} \text { is from } N\left(x_{n} \mid \theta, 1\right)\right)\end{cases}
$$

and place a prior on the latent variables

$$
p(\mathbf{z} \mid \tau)=\prod_{n=1}^{N} \tau^{z_{n 2}}(1-\tau)^{z_{n 1}}
$$

The likelihood in the latent variable model is given by

$$
p(\mathbf{x} \mid \mathbf{z}, \theta)=\prod_{n=1}^{N} N\left(x_{n} \mid 0,1\right)^{z_{n 1}} N\left(x_{n} \mid \theta, 1\right)^{z_{n 2}}
$$

The joint distribution of all observed (\mathbf{x}) and unobserved variables (\mathbf{z}, τ, θ) factorizes as follows

$$
p(\mathbf{x}, \mathbf{z}, \tau, \theta)=p(\tau) p(\theta) p(\mathbf{z} \mid \tau) p(\mathbf{x} \mid \mathbf{z}, \theta)
$$

and the \log of the joint distribution can correspondingly be written as

$$
\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)=\log p(\tau)+\log p(\theta)+\log p(\mathbf{z} \mid \tau)+\log p(\mathbf{x} \mid \mathbf{z}, \theta)
$$

We approximate the posterior distribution $p(\mathbf{z}, \tau, \theta \mid \mathbf{x})$ using the factorized variational distribution $q(\mathbf{z}) q(\tau) q(\theta)$.

Update of factor $q(\mathbf{z})$
To compute the updated distribution $q^{*}(\mathbf{z})$, we first compute the expectation of the \log of the joint distribution over all other unknowns in the model

$$
\begin{align*}
\log q^{*}(\mathbf{z}) & =E_{\tau, \theta}[\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)] \\
& \left.=E_{\tau}[\log p(\mathbf{z} \mid \tau)]+E_{\theta}[\log p(\mathbf{x} \mid \mathbf{z}, \theta)]+\text { const (not dependent on } \mathbf{z}\right) \\
& =E_{\tau}\left\{\sum_{n=1}^{N}\left[z_{n 2} \log \tau+z_{n 1} \log (1-\tau)\right]\right\}+E_{\theta}\left\{\sum_{n=1}^{N}\left[z_{n 1} \log N\left(x_{n} \mid 0,1\right)+z_{n 2} \log N\left(x_{n} \mid \theta, 1\right)\right]\right\}+\text { const } \\
& =\sum_{n=1}^{N}\left\{z_{n 2} E_{\tau}[\log \tau]+z_{n 1} E_{\tau}[\log (1-\tau)]\right\}+\sum_{n=1}^{N}\left\{z_{n 1} \log N\left(x_{n} \mid 0,1\right)+z_{n 2} E_{\theta}\left[\log N\left(x_{n} \mid \theta, 1\right)\right]\right\}+\text { const } \\
& =\sum_{n=1}^{N} z_{n 1}\left\{E_{\tau}[\log (1-\tau)]-\frac{1}{2} \log (2 \pi)-\frac{1}{2} x_{n}^{2}\right\}+\sum_{n=1}^{N} z_{n 2}\left\{E_{\tau}[\log (\tau)]-\frac{1}{2} \log (2 \pi)-\frac{1}{2} E_{\theta}\left[\left(x_{n}-\theta\right)^{2}\right]\right\}+\text { const } \\
& =\sum_{n=1}^{N}\left\{z_{n 1} \log \rho_{n 1}+z_{n 2} \log \rho_{n 2}\right\}+\text { const, } \tag{2}
\end{align*}
$$

where we have defined variables $\rho_{n 1}$ and $\rho_{n 2}$ for all n as follows

$$
\begin{align*}
& \log \rho_{n 1}=E_{\tau}[\log (1-\tau)]-\frac{1}{2} \log (2 \pi)-\frac{1}{2} x_{n}^{2} \quad \text { and } \tag{3}\\
& \log \rho_{n 2}=E_{\tau}[\log (\tau)]-\frac{1}{2} \log (2 \pi)-\frac{1}{2} E_{\theta}\left[\left(x_{n}-\theta\right)^{2}\right] \tag{4}
\end{align*}
$$

By exponentiating both sides of equation (2), we get

$$
q^{*}(\mathbf{z}) \propto \prod_{n=1}^{N} \prod_{k=1}^{2} \rho_{n k}^{z_{n k}}
$$

which we can normalize to make a proper distribution

$$
q^{*}(\mathbf{z})=\prod_{n=1}^{N} \prod_{k=1}^{2} r_{n k}^{z_{n k}}
$$

where

$$
\begin{equation*}
r_{n k}=\frac{\rho_{n k}}{\sum_{j=1}^{2} \rho_{n j}} \tag{5}
\end{equation*}
$$

Note that to compute the updated responsibilities $r_{n k}$, we need $E_{\tau}[\log (1-\tau)], E_{\tau}[\log (\tau)]$, and $E_{\theta}\left[\left(x_{n}-\theta\right)^{2}\right]$, where the expectations are computed over the distributions $q(\tau)$ and $q(\theta)$, which will be derived next.

Update of factor $q(\tau)$

$$
\begin{aligned}
\log q^{*}(\tau) & =E_{\mathbf{z}, \theta}[\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)] \\
& \left.=\log p(\tau)+E_{\mathbf{z}}[\log p(\mathbf{z} \mid \tau)]+\text { const (not dependent on } \tau\right) \\
& =\ldots(\text { left as an exercise })
\end{aligned}
$$

We exponentiate and recognize the exponentiated form as,

$$
q^{*}(\tau)=\operatorname{Beta}\left(\tau \mid N_{2}+\alpha_{0}, N_{1}+\alpha_{0}\right)
$$

i.e., τ has a $\operatorname{Beta}(a, b)$ with parameters $a=N_{2}+\alpha_{0}$ and $b=N_{1}+\alpha_{0}$, where $N_{k}=\sum_{n=1}^{N} r_{n k}$ for $k=1,2$. Using this distribution, we get the following formulas for the terms required when updating $q(\mathbf{z})$

$$
\begin{align*}
E_{\tau}[\log (\tau)] & =\psi\left(N_{2}+\alpha_{0}\right)-\psi\left(N_{1}+N_{2}+2 \alpha_{0}\right) \tag{6}\\
E_{\tau}[\log (1-\tau)] & =\psi\left(N_{1}+\alpha_{0}\right)-\psi\left(N_{1}+N_{2}+2 \alpha_{0}\right), \tag{7}
\end{align*}
$$

where ψ is the digamma function. Formulas (6) and (7) follow from the basic properties of the beta distribution (see e.g. Wikipedia) and by noticing that if $\tau \sim \operatorname{Beta}(a, b)$, then $1-\tau \sim \operatorname{Beta}(b, a)$.

Update of factor $q(\theta)$

$$
\begin{equation*}
\log q^{*}(\theta)=\ldots(\text { left as an exercise }) \tag{8}
\end{equation*}
$$

Again, we exponentiate both sides of (8) and recognize this as

$$
\begin{equation*}
q^{*}(\theta)=N\left(\theta \mid m_{2}, \beta_{2}^{-1}\right), \tag{9}
\end{equation*}
$$

with

$$
\beta_{2}=\beta_{0}+N_{2} \quad \text { and } \quad m_{2}=\beta_{2}^{-1} N_{2} \bar{x}_{2}
$$

where we have defined

$$
\bar{x}_{2}=\frac{1}{N_{2}} \sum_{n=1}^{N} r_{n 2} x_{n}
$$

We can use the distribution (9) to compute the formula for $E_{\theta}\left[\left(x_{n}-\theta\right)^{2}\right]$, needed when updating $q(\mathbf{z})$:

$$
\begin{align*}
E_{\theta}\left[\left(x_{n}-\theta\right)^{2}\right] & =E_{\theta}\left[\left(x_{n}-m_{2}+m_{2}-\theta\right)^{2}\right] \\
& =\left(x_{n}-m_{2}\right)^{2}+2\left(x_{n}-m_{2}\right) E\left[m_{2}-\theta\right]+E\left[\left(m_{2}-\theta\right)^{2}\right] \\
& =\left(x_{n}-m_{2}\right)^{2}+0+\beta_{2}^{-1} \tag{10}
\end{align*}
$$

The last equality in (10) followed from the fact that when $\theta \sim N\left(m_{2}, \beta_{2}^{-1}\right)$, then $m_{2}-\theta \sim N\left(0, \beta_{2}^{-1}\right)$.
The overall VB algorithm is obtained by cycling through updating

1. the responsibilities $r_{n k}$ using formulas (3), (4), and (5)
2. the terms (10) needed when computing the responsibilities
3. the terms (6) and (7) needed when computing the responsibilities

Code to run the EM-algorithm: simple_vb.m

