
Example of the variational approximation for the course Machine Learning: Advanced
Probabilistic Methods (2015), P.Marttinen
Suppose that we have N independent observations x = (x1; : : : ; xN ) from a two-component mixture

of univariate Gaussian distributions

p(xnj�) = (1� �)N(xnj0; 1) + �N(xnj�; 1); (1)

that is, with probability 1� � the observation xn is generated from the �rst component N(xnj0; 1), and
with probability � from the second component N(xnj�; 1). The model (1) has two unknown parameters,
(�; �), the mixture coe¢ cient and the mean of the second component.
Our goal is to carry out a fully Bayesian analysis using the mean-�eld variational Bayes approximation.

We place the following priors on the unknown parameters

� � Beta(�0; �0)

� � N(0; ��10 ):

We formulate the model using latent variables z =(z1; : : : ; zN ) which explicitly specify the component
responsible for generating observation xn. In detail,

zn = (zn1; zn2)
T =

�
(1; 0)T ; (xn is from N(xnj0; 1))
(0; 1)T ; (xn is from N(xnj�; 1))

;

and place a prior on the latent variables

p(zj�) =
NY
n=1

�zn2(1� �)zn1 :

The likelihood in the latent variable model is given by

p(xjz; �) =
NY
n=1

N(xnj0; 1)zn1N(xnj�; 1)zn2 :

The joint distribution of all observed (x) and unobserved variables (z; �; �) factorizes as follows

p(x; z; �; �) = p(�)p(�)p(zj�)p(xjz; �)

and the log of the joint distribution can correspondingly be written as

log p(x; z; �; �) = log p(�) + log p(�) + log p(zj�) + log p(xjz; �):

We approximate the posterior distribution p(z; �; �jx) using the factorized variational distribution
q(z)q(�)q(�):
Update of factor q(z)
To compute the updated distribution q�(z), we �rst compute the expectation of the log of the joint

distribution over all other unknowns in the model

log q�(z) = E�;�[log p(x; z; �; �)]

= E� [log p(zj�)] + E�[log p(xjz; �)] + const (not dependent on z)

= E�

(
NX
n=1

[zn2 log � + zn1 log(1� �)]
)
+ E�

(
NX
n=1

[zn1 logN(xnj0; 1) + zn2 logN(xnj�; 1)]
)
+ const

=
NX
n=1

fzn2E� [log � ] + zn1E� [log(1� �)]g+
NX
n=1

fzn1 logN(xnj0; 1) + zn2E� [logN(xnj�; 1)]g+ const

=
NX
n=1

zn1

�
E� [log(1� �)]�

1

2
log (2�)� 1

2
x2n

�
+

NX
n=1

zn2

�
E� [log(�)]�

1

2
log (2�)� 1

2
E�
�
(xn � �)2

��
+ const

=
NX
n=1

fzn1 log �n1 + zn2 log �n2g+ const, (2)
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where we have de�ned variables �n1 and �n2 for all n as follows

log �n1 = E� [log(1� �)]�
1

2
log (2�)� 1

2
x2n and (3)

log �n2 = E� [log(�)]�
1

2
log (2�)� 1

2
E�
�
(xn � �)2

�
: (4)

By exponentiating both sides of equation (2), we get

q�(z) /
NY
n=1

2Y
k=1

�znknk ;

which we can normalize to make a proper distribution

q�(z) =
NY
n=1

2Y
k=1

rznknk ;

where
rnk =

�nkP2
j=1 �nj

: (5)

Note that to compute the updated responsibilities rnk; we need E� [log(1� �)] ; E� [log(�)] ; and
E�
�
(xn � �)2

�
; where the expectations are computed over the distributions q(�) and q(�), which will be

derived next.
Update of factor q(�)

log q�(�) = Ez;�[log p(x; z; �; �)]

= log p(�) + Ez [log p(zj�)] + const (not dependent on �)
= : : : (left as an exercise)

We exponentiate and recognize the exponentiated form as,

q�(�) = Beta(� jN2 + �0; N1 + �0);

i.e., � has a Beta(a; b) with parameters a = N2+�0 and b = N1+�0, where Nk =
PN

n=1 rnk for k = 1; 2:
Using this distribution, we get the following formulas for the terms required when updating q(z)

E� [log(�)] =  (N2 + �0)�  (N1 +N2 + 2�0) (6)

E� [log(1� �)] =  (N1 + �0)�  (N1 +N2 + 2�0); (7)

where  is the digamma function. Formulas (6) and (7) follow from the basic properties of the beta
distribution (see e.g. Wikipedia) and by noticing that if � � Beta(a; b); then 1� � � Beta(b; a).
Update of factor q(�)

log q�(�) = :::(left as an exercise) (8)

Again, we exponentiate both sides of (8) and recognize this as

q�(�) = N
�
�jm2; �

�1
2

�
; (9)

with
�2 = �0 +N2 and m2 = ��12 N2x2;

where we have de�ned

x2 =
1

N2

NX
n=1

rn2xn:

We can use the distribution (9) to compute the formula for E�
�
(xn � �)2

�
, needed when updating q(z):

E�
�
(xn � �)2

�
= E�

�
(xn �m2 +m2 � �)2

�
= (xn �m2)

2 + 2(xn �m2)E [m2 � �] + E
�
(m2 � �)2

�
= (xn �m2)

2 + 0 + ��12 : (10)

The last equality in (10) followed from the fact that when � � N(m2; �
�1
2 ); then m2 � � � N(0; ��12 ):

The overall VB algorithm is obtained by cycling through updating
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1. the responsibilities rnk using formulas (3), (4), and (5)

2. the terms (10) needed when computing the responsibilities

3. the terms (6) and (7) needed when computing the responsibilities

Code to run the EM-algorithm: simple_vb.m
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