

Security & Machine Learning

MSS – Lecture 7 Samuel Marchal, Mika Juuti

What will you learn

- Basics concepts of machine learning
- When and how to use machine learning for security
- Threats against machine learning systems

Schedule

Introduction to Machine Learning (ML) • Data and ML ۲ Supervised learning ۲ Challenges in ML applications ulletMachine Learning for Security [30 min] General concept & Anomaly detection ۲ Use case: phishing detection (Off-the-Hook) lacksquare**Specificity of ML for security applications** [25 min] \bullet Pitfalls lacksquareRecommendations ۲ **ML** in the presence of adversaries [15 min] ۲

[30 min]

Data and Machine Learning

Machine learning

Machine learning (ML) is a subfield of AI that deals with teaching computer systems to do infer decisions based on <u>data</u>:

- 1. Is the skin tumor malicious or benign?
- 2. What animal is in the picture?
- 3. How do you represent this English sentence in french?

"Field of study which gives computers the ability to learn without being explicitly programmed."[1]

Representing data

Finding a suitable representation of data

How would you represent the following sentence?

Alice bought 5 apples

Representing data (base)

Finding a suitable representation of data

How would you represent the following sentence?

Alice bought 5 apples

- Word-level (>5000 symbols):
 - [Alice, bought, 5, apples]
- Character-level (~100 symbols):
 - [A,I,i,c,e, ,b,o,...,p,p,I,e,s]
- Part-of-speech tags (~20 symb.):
 - [Noun, verb, count, noun]
- Word2vec embedding

Representing data (n-grams / shingles)

Finding a suitable representation of data

How would you represent the following sentence?

Alice bought 5 apples

Unigrams: [Alice, bought, 5, apples]

Bigrams: [(Alice,bought), (bought,5), (5,apples)]

Representing data (attributes)

Finding a suitable representation of data

How would you represent the following sentence?

Alice bought 5 apples

Sentence length = 4 Sentiment = neutral Number of verbs = 1 Number of dots = 0 Number of adjectives = 0

Matrix representation of data

Let's take the attribute-based features in previous page. Group sentences as rows, attributes/features/variables in columns, e.g.

Alice bought 5 apples \rightarrow Bob bought 6 apples \rightarrow David loves red apples \rightarrow

Feat. 1	Feat. 2	Feat. 3	Feat. 4	Feat. 5
4	2	1	0	0
4	2	1	0	0
4	2	1	0	1

Is this a good representation of data?

Choosing the right representation

- The right representation is always context-dependent
 - A set of features that do well in predicting party affiliation might do horrible at predicting age
- Typical evaluation metric: *performance on test set*

Supervised learning of information

Supervised learning

Algorithmically finding meaningful structure in data X that explains some target variable y

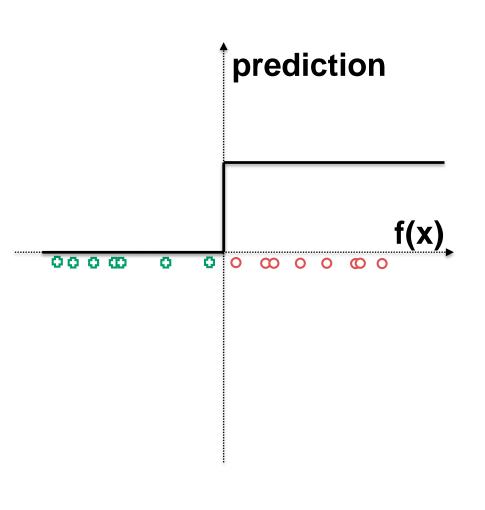
 $f(\boldsymbol{X}) \approx \boldsymbol{y}$

- 1) Target variable continuous: regression
 - a) Linear regression, decision trees etc
- 2) Target variable categorical: classification
 - a) Typically *easier* to do than regression in high-dimensional space
 - b) Generally the *more classes* (*unique values in y*), the *more difficult* it is

Classification

In two-class classification, the purpose is to find a function *f* that separates the data X such that

- 1) $f(X) > 0 \rightarrow 1$ O
- 2) $f(X) < 0 \rightarrow 0$



Confusion matrix (spam classification)

Predicted class

e class		REAL	SPAM1	SPAM2
las	REAL	5000	550	750
le c	SPAM1	500	500	250
L L	SPAM2	1000	450	500

Accuracy (spam classification)

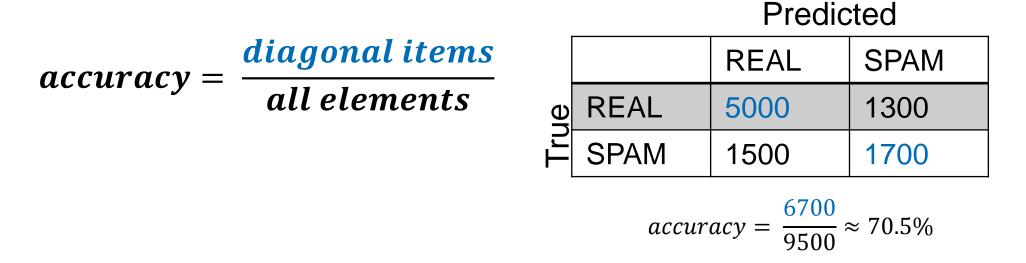
Predicted class

ISS		REAL	SPAM1	SPAM2
class	REAL	5000	550	750
True c	SPAM1	500	500	250
	SPAM2	1000	450	500

$$accuracy = \frac{6000}{9500} \approx 63.2\%$$

Is this good?

Can you think of a way to achieve better accuracy by changing class labels?



S		REAL	SPAM1	SPAM2	Σ	recall
las	REAL	5000	550	750	6300	0.79
le c	SPAM1	500	500	250	1250	
Tru	SPAM2	1000	450	500	1950	

Predicted class

True positive rate

1)

 How often real class is recognized correctly

True positive rate = recall $TPR = \frac{tp}{tp + fn} = \frac{tp}{detection}$

S		REAL	SPAM1	SPAM2	Σ	recall
las	REAL	5000	550	750	6300	0.79
le c	SPAM1	500	500	250	1250	0.40
Tru	SPAM2	1000	450	500	1950	0.26

Predicted class

1) True positive rate

• How often real class is recognized correctly

True positive rate = recall

$$TPR = \frac{tp}{tp + fn} = \frac{tp}{detection}$$

Predicted class

S		REAL	SPAM1	SPAM2	Σ	recall	1)
las	REAL	5000	550	750	6300	0.79	
ue c	SPAM1	500	500	250	1250	0.40	
Tru	SPAM2	1000	450	500	1950	0.26	2)
	Σ	6500					
	Precis.	0.77					

1) True positive rate

 How often real class is recognized correctly

•

How often predicted class was real class

$$precision = \frac{tp}{tp + fp} = \frac{tp}{PPV}$$

Predicted class

S		REAL	SPAM1	SPAM2	Σ	recall] 1) •
lass	REAL	5000	550	750	6300	0.79	'
ue c	SPAM1	500	500	250	1250	0.40	
Tru	SPAM2	1000	450	500	1950	0.26	2)
	Σ	6500	1500	1500			
	Precis.	0.77	0.33	0.33]

True positive rate 1)

- How often real class • is recognized correctly
- Precision

How often predicted class was real class

$$precision = \frac{tp}{tp + fp} = \frac{tp}{PPV}$$

Predicted class

S		REAL	SPAM1	SPAM2	Σ	recall] '
las	REAL	5000	550	750	6300	0.79	
le C	SPAM1	500	500	250	1250	0.40	
2	SPAM2	1000	450	500	1950	0.26	
	Σ	6500	1500	1500			
	Precis.	0.77	0.33	0.33			
	Fscore	0.78	0.36	0.29			

$$Fscore = \frac{2 \cdot (prec \cdot rec)}{prec + rec}$$

True positive rate

How often real class is recognized correctly

Precision

How often predicted class was real class

F-score 3)

- Harmonic mean of the • two above
 - Low if either one is low •
 - High if both are high •

Class imbalance affects accuracy

S		REAL	SPAM1	SPAM2		
class	REAL	5000	550	750		
le C	SPAM1	500	500	250		
True	SPAM2	1000	450	500		

Predicted class

If dataset imbalanced:

A) Upsample/downsample training and test data

OR

B) Use metrics that do not depend on dataset imbalances (ROC curve)

Always check that classes roughly equally sized before reporting accuracy.

Challenges in ML

Challenge 1. Training/test set

- The goal of machine learning is not to achieve good performance on the training set, but on the actual data it will be used with
 - Any performance metric estimated on a training set can easily reach 100% accuracy
 - This can be done simply by memorizing all training data!
- Performance needs to be evaluated on a separate test set
 - Practically by reserving a portion of the data for evaluation
- Ideally, testing should be done with off-training set data
 - Better estimate for future performance

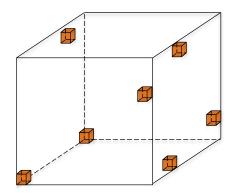
No free lunch theorem [1]

Alpaydin 2010 [2]:

"as stated by the No Free Lunch theorem (Wolpert 1995), **there is no such thing as the** "**best**" learning algorithm. For any learning algorithm, there is a dataset where it is very accurate and another dataset where it is very poor. When we say that a learning algorithm is good, we only quantify how well its inductive bias matches the properties of the data."

Challenge 2. Curse of dimensionality

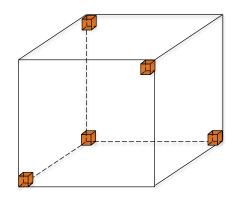
- Consider D-dimensional cube in [0,1]^D with N non-overlapping data points
 - Each point occupies a small space around itself, e.g. A volume (0.1)^D



- Occupied space volume:
 - $N \times 0.1^{D}$
 - Occupied space grows linearly for each new added data point
- Unoccupied space volume:
 - $1-(N \times 0.1^D)$
 - Unoccupied space grows
 exponentially with each added feature
- E.g. optimal coverage of data points:
- 100 points in 2D: 100 % coverage
- 100 points in 3D: 10 % coverage
- ...
- 100 points 10D: 0.000001% coverage

Curse of dimensionality (sparse data)

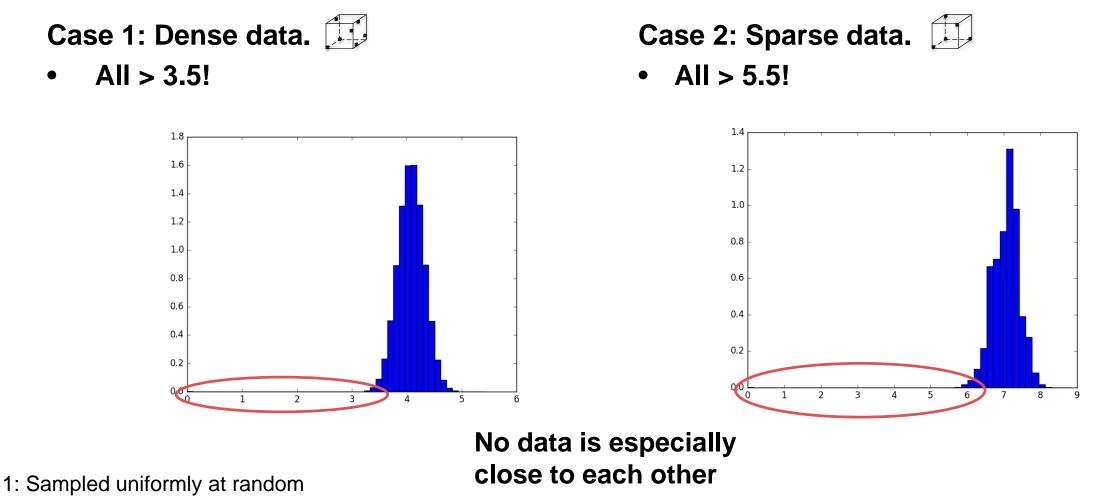
- Consider D-dimensional cube in [0,1]^D with N non-overlapping data points
 - Each point occupies a small space around itself, e.g. A volume (0.1)^D



- If data is sparse, problems are more profound
 - Euclidean point-to-point distances are quantized, possible values are:
 - $[0, \sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{D}]$
 - Minimum distance between two points is 1, unless points superimposed
 - Point-to-point distances are not distributed around 0

100 million data points¹ in 100 dimensional unit cube.

Q1: What is the *average* **distance between points? Q2: How close are points?** E.g. Closest 1%?



Curse of dimensionality

- Difficult for the human mind to make sense out of (severely) multidimensional data.
 - High-dimensional data can also result in slower execution
- Problems becomes more profound with sparse data.
 - Only a small amount of the attributes are non-zero
- Traditional statistics relying on well-established distributions don't work well in high-dimensional spaces.
 - E.g. Confidence intervals based on gaussian distributions

Representing data

Sometimes there is no clear way to represent data

- → Data representation choice often based on performance metrics
 - → This is problematic in security/privacy problems!
- \rightarrow Prefer low-dimensional and dense data whenever possible!

Machine Learning for Security

Why using ML to secure systems ?

Securing systems by design:

- We know attacks: threat modelling / observation
- Design the system to prevent them

Limitations:

- Attack space too broad and complex to be manually modeled
- Impact on usability (restrict functionalities)
- Maliciousness related to intent
- Attack does not target the system but e.g. users

We may not know attacks!

How to secure systems with ML?

Use an ML algorithm to automatically detect attacks

- Supervised learning to distinguish attack / non-attack
 - Model non-attack \rightarrow OK
 - What attacks look like ?
- Anomaly detection to detect unknown attacks

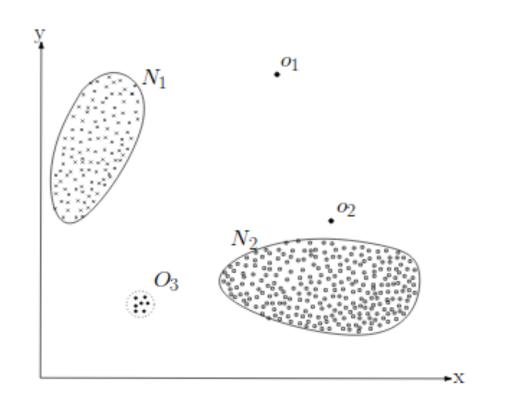
Securing systems using anomaly detection

- Anomaly detection
- Example anomaly detection applications
 - NIDS, HIDS, etc.
- Supervised learning example
 - Phishing webpage detection

What is an anomaly ?

• Instances that do not fit a "*normal*" pattern

- Novelties, outliers, exceptions
- Not necessarily malicious
- Typically unknown pattern
- Sort of anomalies
 - Global: o_1
 - Local: o_2



Typical anomaly detection

• Define what is a "*normal*" pattern ?

- Domain specific
- Can evolve over time
- Anomalies mimic normal pattern \rightarrow typical for security applications
- Requires assumptions on normality
- Lack of labeled data for validation

K-Nearest Neighbor (k-NN) global anomaly detection

• Assumptions:

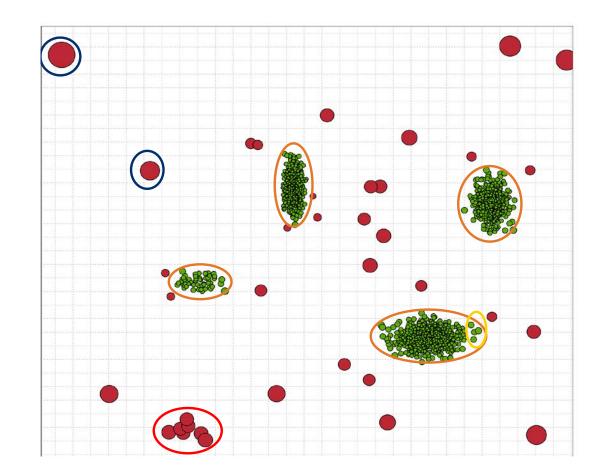
- Normal data located in *densely populated area* of the feature space
- Anomalies are *isolated* instances that can be close to only a few other samples

• Principle:

- Compute an anomaly score = average distance to *k* nearest neighbors
- Set a threshold on anomaly score to get binary prediction
- 10 < *k* < 50

K-Nearest Neighbor (k-NN) global anomaly detection

- "Normal" data
- Global anomalies
- Group of anomalies
- Local anomalies



Network anomaly detection (Network Intrusion Detection System – NIDS)

- Assumptions
 - Normal/expected network traffic presents similar characteristics over time
 - Anomalies (i.e. signs of defect, misconfiguration, attacks) differ from normal traffic

• Find a representation for these characteristics

- Model the normal traffic
- Distinguish normality from anomaly
- \rightarrow *Features* and feature space

Network anomaly detection (Network Intrusion Detection System – NIDS)

Example features for NIDS

- Model traffic
 - Communication protocol (HTTP/FTP/DNS)
 - IP source / destination or subnet
 - Global load, e.g. at router, per time period
 - Flow duration between two entities
- Distinguish anomalies (use knowledge from existing attacks)
 - Denial of Service \rightarrow packet rate per IP source
 - Code injection \rightarrow payload based features, e.g. n-grams

Other example applications

• Host-based Intrusion Detection System (IDS)

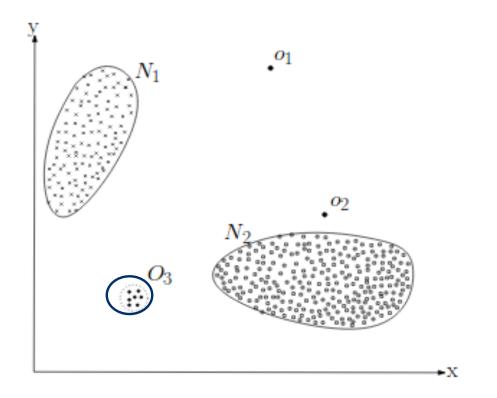
- User ID
- Command line invoking a process
- File accessed
- Previous accessed file

• Credit card transactions (fraud detection)

- Retailer information, e.g. location
- Time of transaction
- Amount

Supervised anomaly detection

- Anomalies typically follow unknown pattern
- Sometimes we know specific anomalies for e.g. malicious samples
 - Follow a common pattern i.e. group of anomalies
- We can use supervised learning to detect known anomalies
 - 2 classes: legitimate vs. malicious



Use case: Phishing webpage detection

Identify a feature space to distinguish phishing from legitimate webpages

obbymodel.kz/media/standard.bank.c	om/account/	1696874965279b5b73c2ef1926b03674/	🦉 🤁 🔍 Q. Search	\$	🗎 🖡 🏠 🚍	🕒 🖲 🛍 https://www10.encrypt.standardbank	k.co.za/ibsa/InternetBanking		C Q Sear	sh	छ 🗎 🗸	🦊 🏠 🗸
Standard Ba	nk	South Africa	STR.			G Standard Bar	1k South Africa	- T				
Internet banking		🔒 Login	Tuesday, 20 October 2015 11:19:05 AM	Registration								
Internet Banking Logon	>	Card		Register) Create PIN and Password)		0.00	Satur	day, 04 March 2017 11:36:04	New	Online E	Banking	
Functionality Accessibility settings	>	CSP 🖸		Reset Password and CSP	5	🔒 Login			ø		🛔) & anyor + 👔 Sprin	
FAQs Costs	>	Password Change CSP		Customer Care Line	9 H	Card			Account Summary betweening	R 32 567.89 R 5 030.00		
About us	>	Password		South Africa 0860 123 000	•	CSP O			(m) Prestge File	R34 223.77 - R5 775-73	wale approval and parts 1	
Contact us Electronic Banking Agreement	>	Login By logging on I acknowledge that I have read,	nderstand and am bound by the version of	International +27 11 299 4701		Password O			Taurig and investige	R423435 R420435 R1264502 R1264502	MALE TRANSPORT OUT MITTAGE 1	
Auto Share Investment Agreement	>	the Electronic Banking Agreement that is poste (Last updated: 27 September 2013)		Email Send us an email			CSP Password		Laste	R 1 000 000.00 - H 570 000.00	CET ET TATINGAT ANOMA	
Privacy and security	>						ogin		fevolving Cradit Plan	R 30 000.00 -R 50 000.00	navora 1	
Disclaimer Standard Bank home page	>	FRAUD together				By logging in I accept the TERMS AN	ND CONDITIONS					

Phishing webpage (phish)

Legitimate webpage

Feature extraction

Differences in landing URL

- Use of secure connection (HTTPS)
- URL slightly longer for phishing
- Use of domain name like file path
- Use name of targeted website
- Use unknown domain name
- Etc.

Potential features

- ➢ HTTP/HTTPS
- Length of URL (characters)
- Dots "." in path
- Fixed token "standard"
- Domain reputation

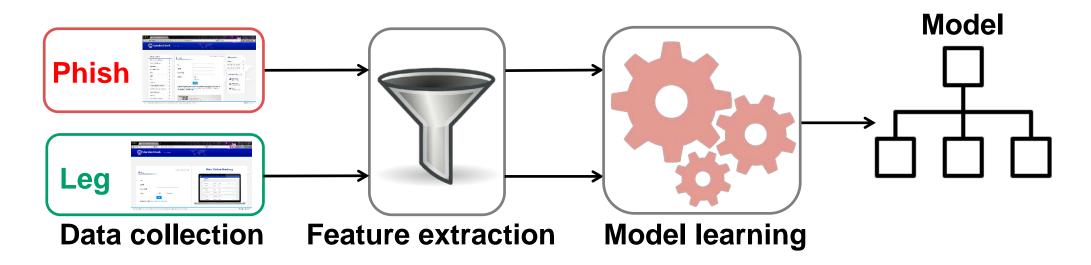
Feature extraction

Apply similar process to other data sources of interest^[1]:

🖓 Standard Ba	nk	South Africa	No.		Starting URL Landing URL	
Internet banking			Tuesday, 20 October 2015 11:1		Redirection chain	interna
About Self-service Banking Internet Banking Logon	`	Login		Register >	Logged links	exterr
Functionality Accessibility settings	>) >	Card		Create PIN and Password > Reset Password and CSP >	HTML source code):
FAQs Costs	> >	Password 2	CSP	Customer Care Line	• Text	
About us	>		Password	6 South Africa 0860 123 000	• Title	
Electronic Banking Agreement	>		Login ledge that I have read, understood and am bound by the version of Agreement that is posted on the website at the time of logging on.	International +27 11 299 4701	HREF links	
Auto Share Investment Agreement Privacy and security	>	(Last updated: 27 Septe		Send us an email	Copyright	
Disclaimer Standard Bank home page	>	LETS	together			

Phishing webpage detection process

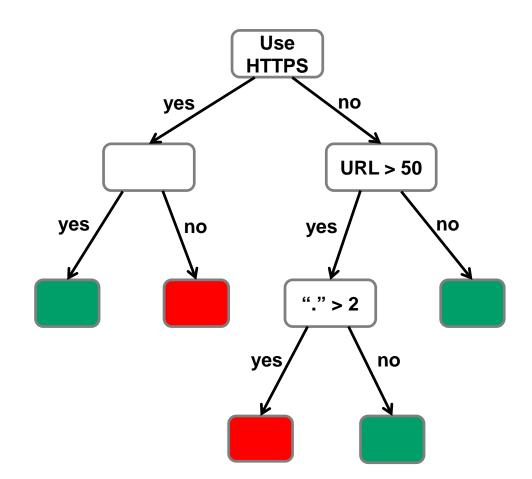
- *Collect observations* representing phishing/legitimate webpages
- *Compute* the defined *features*
- Automatically *learn differences (model)* between classes (phishing/legitimate) → Machine Learning algorithm
- *Predict* the class of unknown instances \rightarrow *phishing* or *legitimate*



Model learning Example: Decision tree

Group of phishs distinguishable from legitimate websites according to some feature values:

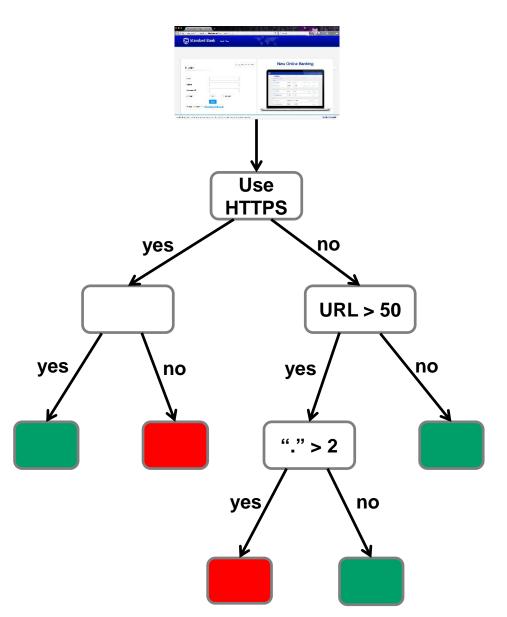
- Do not use HTTPS
- URL length greater than 50
- More than 2 "." in their path



Prediction (new websites)

Features extracted and evaluated against the learned model (decision tree)

- Do not use HTTPS
- URL length lower than 50
- \rightarrow The website is legitimate



Off-the Hook: Fast clientside phishing detection

[1] Marchal et al., Off-the-Hook: An Efficient and Usable Client-Side Phishing Prevention Application, 2017

Phisher's control & constraints

Data sources differ in terms of the levels of

- control the phisher has over a source
- constraints placed on the phisher in manipulating that source

URL Structure FreeURL Domain Name FreeURL protocol://[subdomains.]mld.ps[/path][?query]

https://www.amazon.co.uk/ap/signin?_encoding=UTF8

- Protocol = *https*
- Registered domain name (RDN) = *amazon.co.uk*
- Main level domain (*mld*) = amazon
- FreeURL = {*www, /ap/signin?_encoding=UTF8*}

Phisher's control & constraints

Control:

• External loaded content (logged links) and external HREF links are usually not controlled by page owner.

Constraints:

• **Registered domain name** part of URL cannot be freely defined: **constrained** by DNS registration policies.

Conjecture: Improve phish detection by modeling control/constraints

• generalizable, language independent, hard to circumvent

Data sources: control & constraints

	Unconstrained	Constrained
Controlled	Text Title Copyright Internal <i>FreeURL (2)</i>	Internal <i>RDN</i> s (2)
Uncontrolled	External FreeURL (2)	External RDNs (2)

A small set (212) of features computed from data sources:

- URL features (106): e.g., # of dots in FreeURL
- Consistency features (101)
- Webpage content (5): e.g., # of characters in *Text*

Features not data-driven: e.g., no bag-of-words features

• Conjecture: can lead to language-independence, temporal resilience

Consistency features

Term usage (66)

• strings of 3 or more characters, separated by standard delimiters

Usage of "Main level domain" (*mld*) from starting/landing URLs (32)

"Registered domain name" usage (RDN) (13)

Phishing detector with 99.9% accuracy

Pitfalls in using ML (for security)

Adversaries will circumvent detection

The ML model is intended to detect/counter attacks

Adversary will attempt to circumvent detection:

- poison learning process
- infer detection model
- mislead classifier

- Modeling constraints and controls of phishers while training
- Adversary can control External RDNs!

Privacy concerns are multilateral

Data used for ML may be sensitive

- Sensitive information about users in
 - training data \rightarrow model inversion, membership inference
 - prediction process \rightarrow user profiling, e.g., in a cloud setting (ML-as-a-service)

- Client-side classifier to avoid disclosure of URLs
- But model stealing may be a concern

Classification landscapes are dynamic

Attacks evolve fast

Prediction instances likely differ from training instances

• E.g., Android malware evolves due to changes in API

- Avoidance of data-driven features
- Models that allow inexpensive retraining

Maintaining labels is expensive

More training data is good; but unbalanced classes typical Data about malicious behavior difficult to obtain

• Labeling is cumbersome, requires expertise, may be inaccurate or may evolve (e.g. phishing URLs)

- Manage with small training sets
- Minimize ratio of training set size to test size

Predictions need to be intelligible

Ability of humans to understand why a prediction occurs

- Detection as malicious \rightarrow forensic analysis
- Explain predictions to users, e.g. why access is prevented
- "Explainability" obligations under privacy regulations like GDPR

- Small set of "meaningful" features
- Use of (ensemble of) shallow decision trees

ML failures can harm user experience

Security is usually a secondary goal

Use of ML must not negatively impact usability

- Decision process should be efficient
- Wrong predictions may have a significant usability cost

- Prediction effectiveness and speed
- In phishing detection, one false positive may be one too much!

Security/privacy applications: desiderata

Circumvention resistance

• Resistance to adversaries

Temporal resilience

• Resilience in dynamic environments

Minimality

Use of minimal training data

Privacy

• Model privacy, training set privacy, and input/output privacy

Intelligibility

Transparent decision process

Effectiveness

• Lightweight, accurate models

How to avoid pitfalls ?

Recommendations and good practice

- ML Algorithm and model
- Feature selection
- Dataset selection
 - Training
 - Testing
- Evaluation
 - Dataset usage
 - Evaluation metrics to consider

ML Algorithm and Model

Resilience to circumvention (or hardening the task)

• Keep decision model and features secret

- Remote / local decision process
 - Distant decision can protect model and features from users/attackers
 - Local decision can ensure user privacy
- Model obfuscation / encryption (also input encryption)
- Non-linear and complex model to avoid model inference
 - Linear regression, decision tree, shallow NN \rightarrow *easy inference*
 - Ensemble methods, deep NN → more complex but still doable

ML Algorithm and Model

- Algorithm to *learn* and *generalize* from *small amount* of data
 - Consider low availability of training data
 - E.g. SVM, deep NN typically require lots of data for training
- Model providing *understanding* in *decision process*
 - E.g. *tree-based methods* give understanding of features involved in decision making
 - Features need yet to be significant...
 - Depriving the decision from understanding does not serve as obfucation and *does not increase resilience to attacks (adversarial ML)*
- Ease for retraining (attack evolution)

Favor carefully hand-crafted features

- Sensible to *distinguish* classes e.g. benign / malicious
 - Can be *automated*: feature extraction / selection
- *Resilient to manipulation* by attacker or costly to manipulate
 - Automated feature selection may *discard features hard to manipulate*
 - Any ML algorithm is vulnerable to adversarial samples
 - Needs *domain expertise* and human input
- Provide understanding for detection and misclassification
 - Automated feature extraction may *loose semantic*

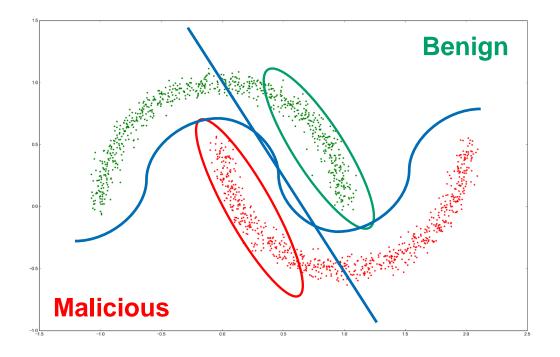
Features *defining the threat generally ≠* ephemerally

- Features common to any kind of anomalies to identify
 - Capability to detect anomalies not already observed
- Don't consider features tied to ephemeral trends
 - Use fixed term, e.g. "paypal", for phishing detection
 - Irrelevant to detect attacks targeting an other brand
- Avoid data-driven feature extraction (e.g. Bag-of-Words)
 - Attacker can easily *infer and manipulate* data-driven features

- Rely on a *few features*:
 - Reduce space of manipulation for an adversary
 - Limited availability of training data (for some class at least)
 - Good practice to generalize a phenomenon: 10x to 100x more training instances than features

Dataset selection

- Representativity of the data → *unbiased dataset*
 - Coverage of the *whole attack space* / normality space
 - Avoid modeling specificities of subset of malicious / benign instances:
 - 10,000 most popular Android app
 - Android malware that contacts malicious domains
- Ensure validity of labels
 - Malicious samples may have inaccurate / disagreeing labels
 - phishing websites, malware (VirusTotal), etc.



Evaluation – dataset usage

Represent real-world scenario

- *Train* the model on *old data* and *test* on *new data*
 - Avoid *cross-validation* \rightarrow overestimate performance
- Use larger testing than training set
 - Ensures *scalability* of the approach
 - Model cannot be trained with more data than it can be applied to

Evaluation – dataset usage

• Deal with unbalanced class problem for training

- Resample the class: under-sampling over-represented class
- Generate synthetic example for the under-represented class (e.g. SMOTE)
- Use penalized models (e.g. penalized-SVM)
- Represent *real-world distribution* for testing
 - Anomalies << normal instances (e.g. phishs << legitimate websites)
 - Preserve repartition for relevant accuracy results from evaluation

Evaluation – metrics to consider

Imbalanced class consideration

- Alcohol test balloon
 - Accuracy = 99%
 - True negative rate = 99%
 - True positive rate = 95%
 - False positive rate = 1%
 - False negative rate = 5%
- Actual driver repartition:
 - 1 drunk / 99 sober
 - 1% drive drunk

- Result from test on 2000 drivers:
 - 19 positives out of 20 actually drunk (True positives)
 - 20 positives out of 1980 not drunk (False positives)
 - If I got controlled positive, my chance of being actually drunk:

Precision = 19 / (19+20) = **49%**

Evaluation – metrics to consider

• Considering unbalanced class (e.g. 100/1) some metrics are not sufficient to assess the accuracy of a system

mn

- Accuracy, AUC, TPRate, etc. can be high while having a *poor classification system* for security applications
- Metrics to present in anomaly detection

• Recall (TP_{rate})
$$\rightarrow$$
 detection capability: $Recall = \frac{IP}{TP + FN}$

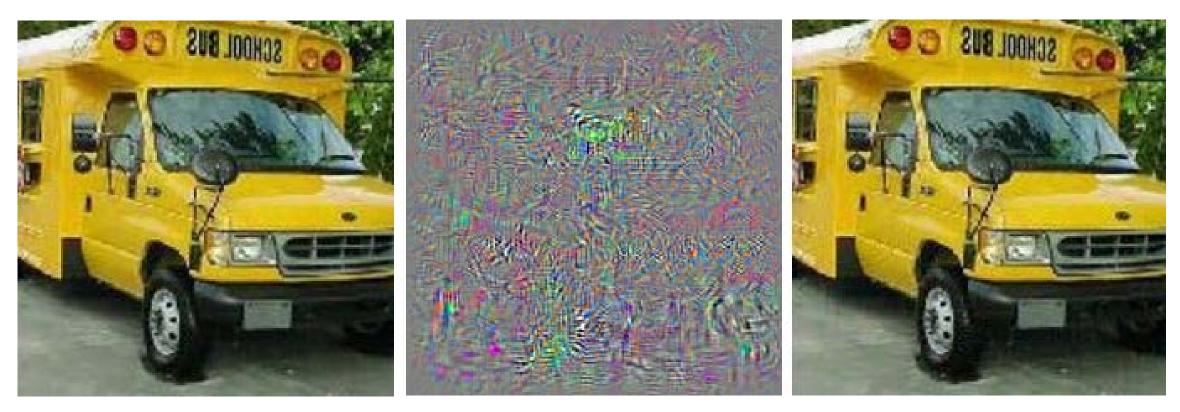
• Precision \rightarrow reliability / unnecessary annoyance: $Precision = \frac{TP}{TP + FP}$

• F-measure \rightarrow harmonic mean of previous: $F = 2 \times \frac{precision \times recall}{precision + recall}$

What about Deep Learning ?

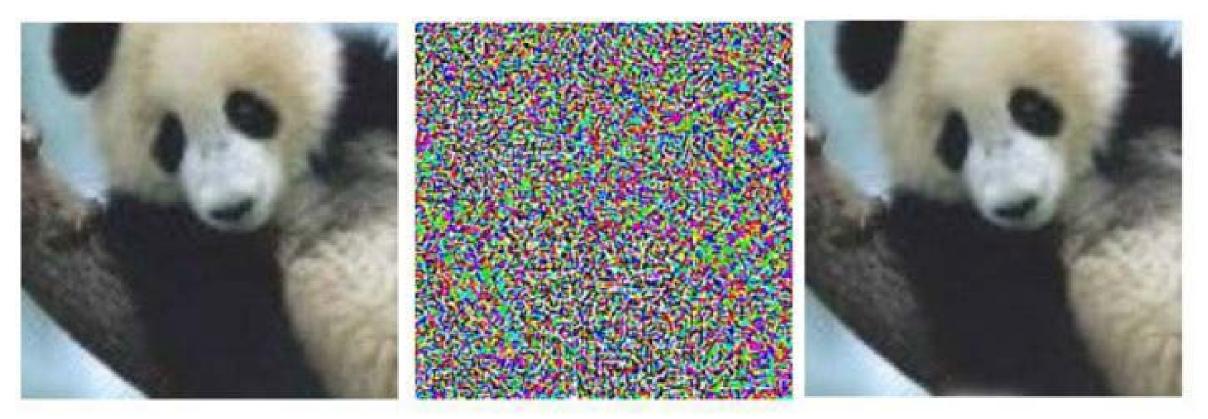
- Typically require *large amount of data* to be trained accurately
 - Problem with availability of labeled data
- Automated feature extraction/selection
 - Features easily manipulated by attackers → ease for circumvention
- Complicated decision process
 - Lack for *accountability in decision*
- Relearning is usually costly
 - High need considering fast evolution in attacks

Machine Learning in the presence of adversaries



Which class is this? School bus

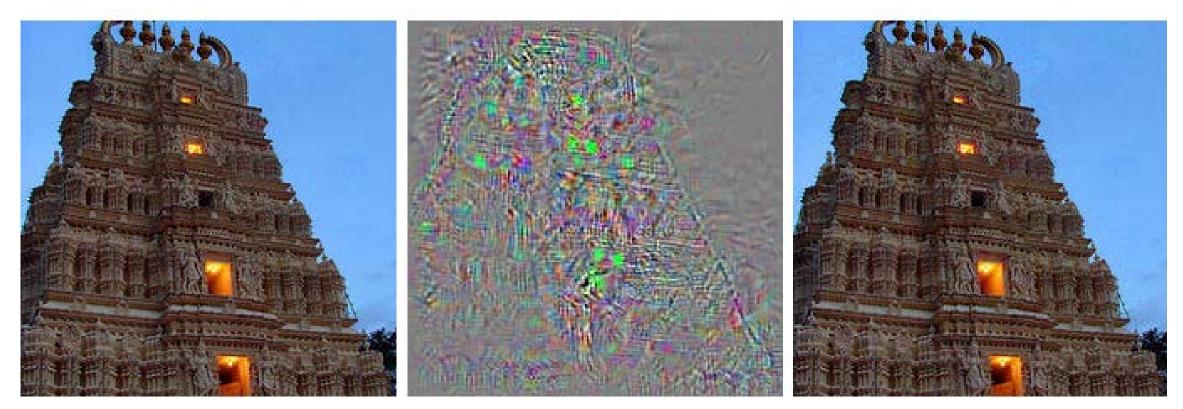
Which class is this? Ostrich



Which class is this? Panda

Which class is this? Gibbon

Goodfellow et al. "Explaining and Harnessing Adversarial Examples" 2015 <u>https://blog.openai.com/robust-adversarial-inputs/</u>



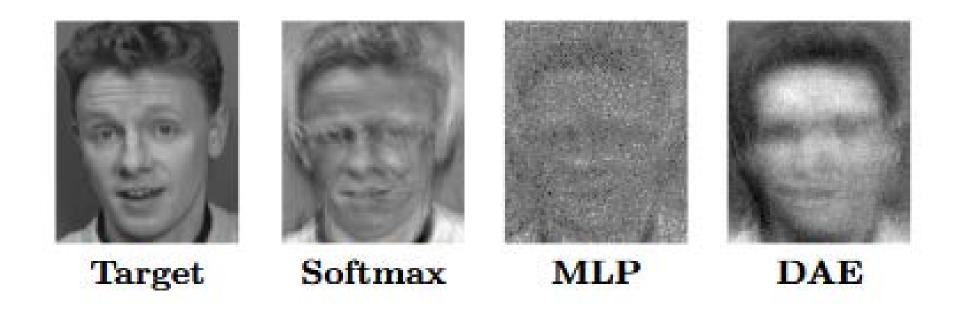
Which class is this? Building

Which class is this? Ostrich

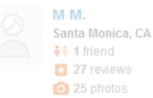
Which class is this? Cat

Athalye et al. "Synthesizing Robust Adve <u>https://blog.openai.com/robust-adversaria</u>

Zhang et al, "DolphinAttack: Inaudible Voice Commands", ACM CCS 2017 https://arxiv.org/abs/1708.09537



83



One of the nicest restaurants in Santa Barbara. I recently celebrated a birthday here and was blown away by the food and the service. The atmosphere is very cozy and aesthetic, which made me feel welcome from the start. We started off with their freshly baked baguettes and the Foie Gras which melted in our mouths. We ordered the roasted duck confit and venison meatballs which were both large and delicious portions. For dessert, we got the upside down blackberry lemon cake and creme brûlée. Great restaurant and will definitely be returning.

Human

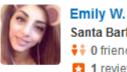
MM. Santa Monica, CA ++ 1 friend 🚼 27 reviews 25 photos

★★★★★ 2/25/2018

The food here is freaking amazing, the portions are giant. The cheese bagel was cooked to perfection and well prepared, fresh & delicious! The service was fast. Our favorite spot for sure! We will be back!

Machine-generated

Which review is human-written?



Santa Barbara, CA **#** 0 friends 1 review

Vancouver, WA **## 0** friends 3 reviews o 1 photo

Share review

★★★★★ 2/23/2018

I love French cuisine and we have found the place for great food, excellent wine pairing. Meals, wine, and service were all exceptional! Will definitely be coming back.

★★★★★ 3/1/2018

I love this palce. Really fancy and really good food. I love the beef tartar. The burger is fenominal. Everything is just amazing! The service was really good. The wait can be long with no reservation

★★★★★ 2/13/2018

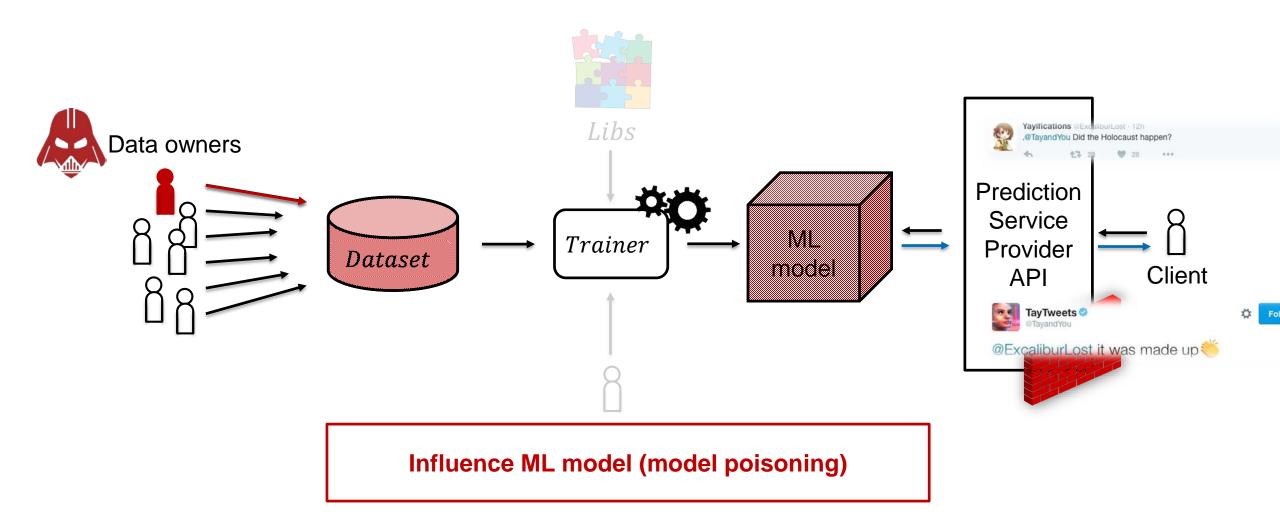
If I can describe this place on 3 words I would say OMG!!!! the food, the service, the ambiance! Perfect from greeting to dessert everything is perfect. My love and i had such a perfect night here we will be back for sure!!!

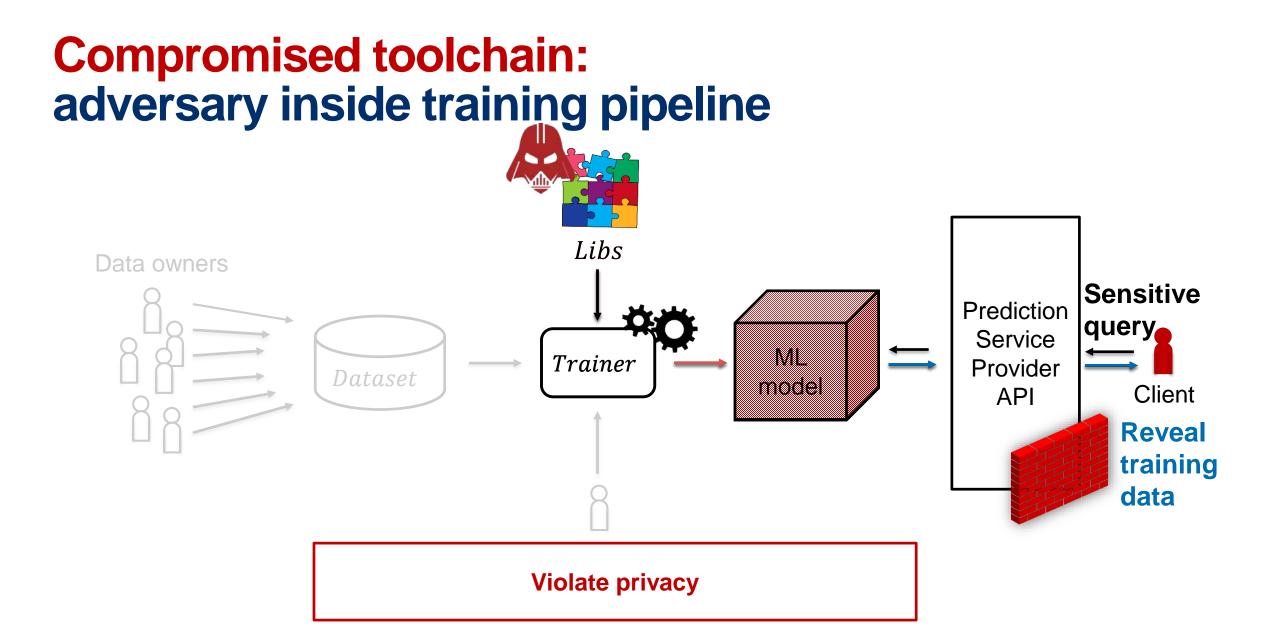
Yao et al. "Automated Crowdturfing Attacks and Defenses in Online Review Systems", CCS'17. https://arxiv.org/abs/1708.08151 Yelp: Bouchon, https://www.yelp.com/biz/bouchon-santa-barbara (Mar 5th 2018)

A Machine Learning pipeline



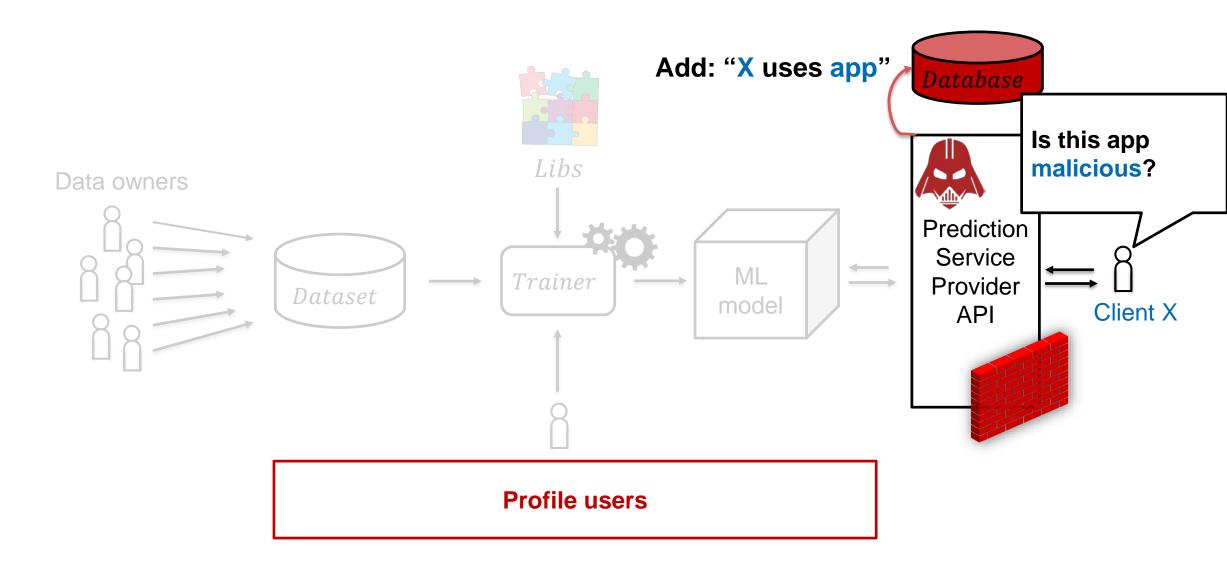
Malicious data owner



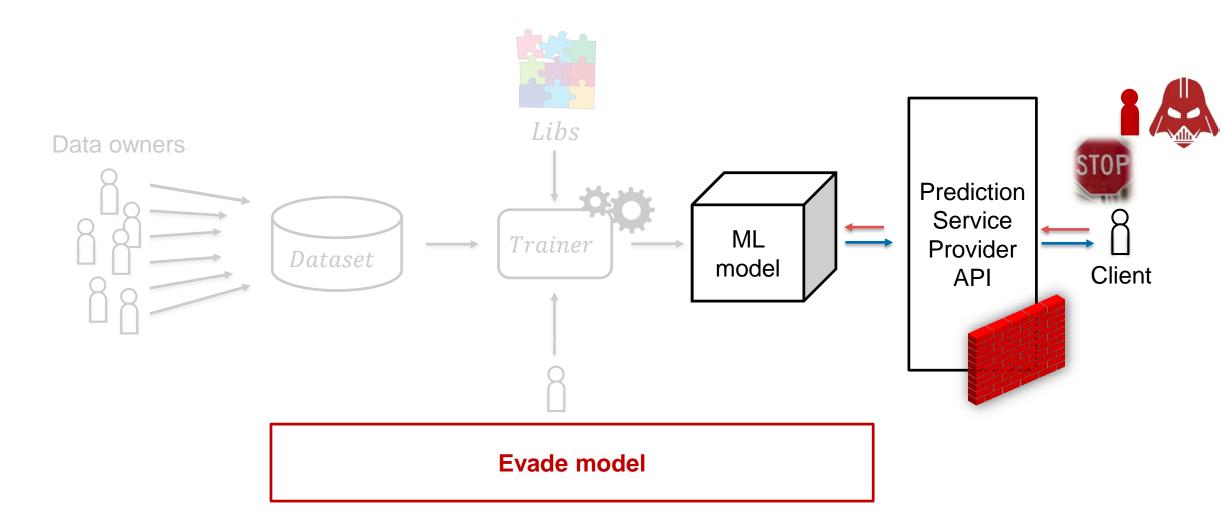


Song et al., "Machine Learning models that remember too much", ACM CCS '17. https://arxiv.org/abs/1709.07886 Hitja et al., "Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning", ACM CCS '17. http://arxiv.org/abs/1702.07464

Malicious prediction service

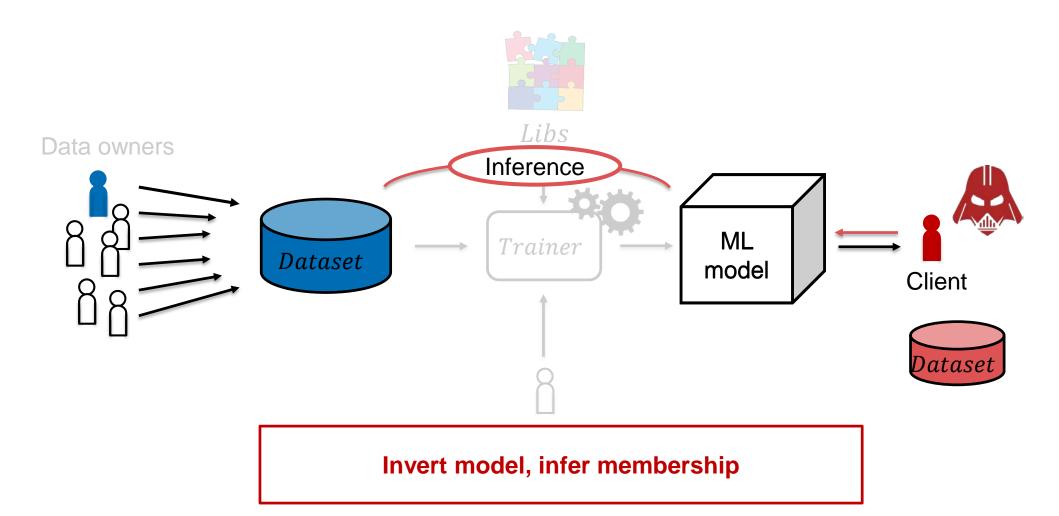


Compromised input



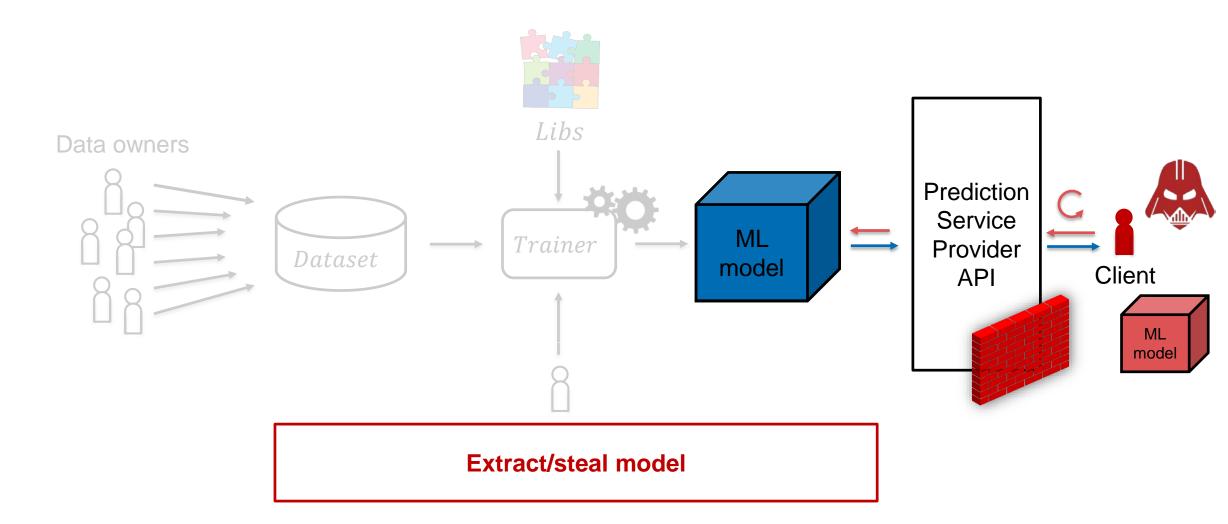
Dang et al., "Evading Classifiers by Morphing in the Dark", ACM CCS '17. <u>https://arxiv.org/abs/1705.07535</u> Evtimov et al., "Robust Physical-World Attacks on Deep Learning Models". <u>https://arxiv.org/abs/1707.08945</u> Zhang et al., "DolphinAttack: Inaudible Voice Commands", ACM CCS '17. <u>https://arxiv.org/abs/1708.09537</u>

Malicious client



Shokri et al., "Membership Inference Attacks Against Machine Learning Models". IEEE S&P '16. <u>https://arxiv.org/pdf/1610.05820.pdf</u> Fredrikson et al., "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures". ACM CCS'15. <u>https://www.cs.cmu.edu/~mfredrik/papers/fjr2015ccs.pdf</u>

Malicious client



Tramer et al., "Stealing ML models via prediction APIs", Usenix SEC '16. https://arxiv.org/abs/1609.02943

Have you learned about

- Basics concepts of machine learning
- When and how to use machine learning for security
- Threats against machine learning systems

Security & Machine Learning

MSS – Lecture 7 Samuel Marchal, Mika Juuti

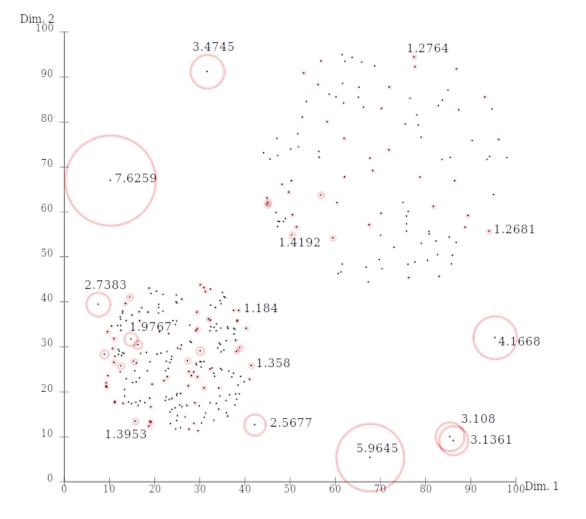
Local Outlier Factor (LOF)

• $dist_k(x)$ = distance from x to its k^{th} nearest neighbor

•
$$rd_k(x, y) = max(dist_k(y), d(x, y))$$

•
$$\frac{\sum_{o \in N_{k}(x)} rd_{k}(x, o)}{|N_{k}(x)|}$$

•
$$\frac{\sum_{o \in N_{k}(x)} \frac{lrd_{k}(o)}{lrd_{k}(x)}}{|N_{k}(x)|}$$

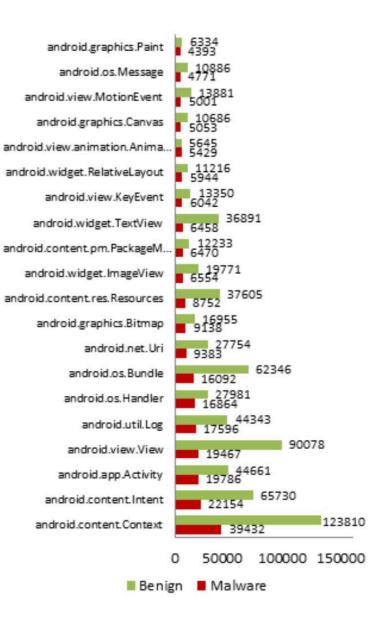


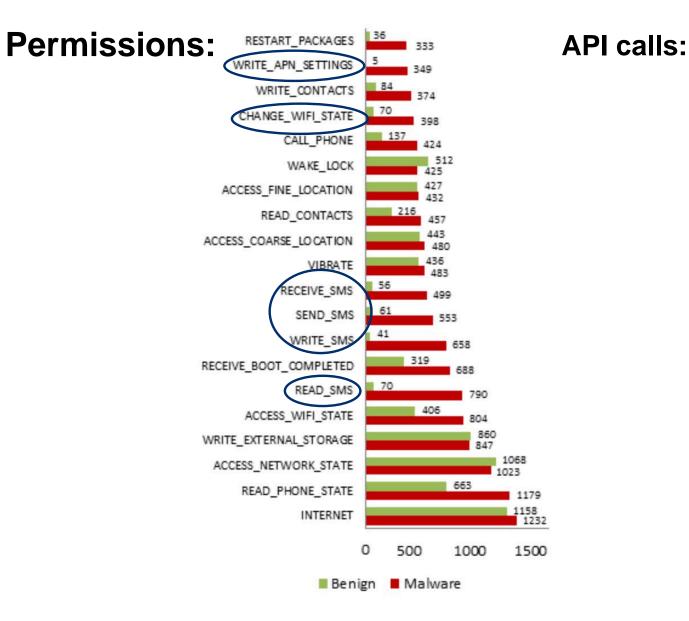
Android malware detection

How to detect Android malware ?

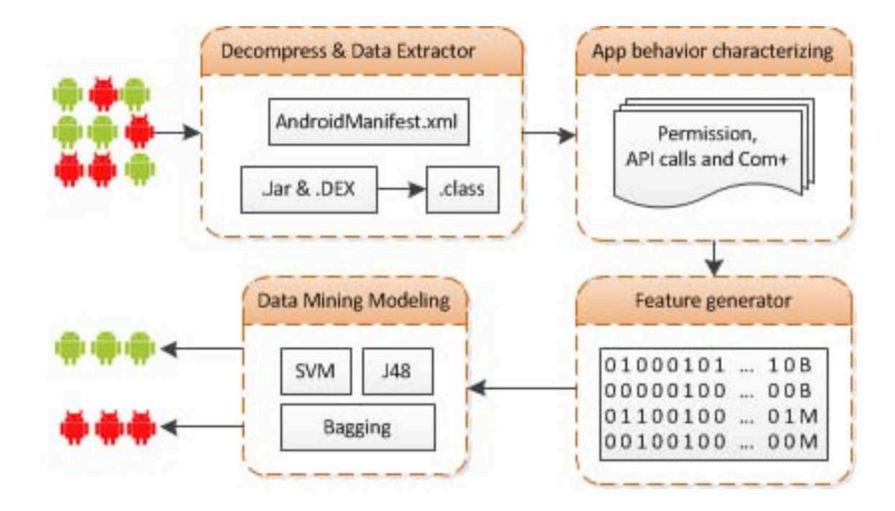
- Behavior comparison between app having same name^[1]
 - System call analysis + crowd-sourcing + K-means clustering
- Permission request and API calls
 - Unsupervised: K-means clustering + k-NN anomaly detection^[2]
 - Supervised: C4.5 (decision tree), SVM, ensemble learning^[3]

Burgera et al., <u>Crowdroid: Behavior-Based Malware Detection System for Android</u>, 2011
 Wu et al., <u>DroidMat: Android Malware Detection through Manifest and API Calls Tracing</u>, 2012
 Peiravian and Zhu, <u>Machine Learning for Android Malware Detection Using Permission and API Calls</u>, 2013





Detection process



Accuracy results

