
Some more models
of organizing
microservices
28.2.2018
Santeri Paavolainen

So far …

- We’ve covered mostly request-oriented architecture models
- Primarily from synchronous assumption: request-process-respond

- How to process …
- Long process time – minutes to hours to days
- Multi-step operations across many systems
- Large amounts of data (terabytes+)
- Responding to events – not “requests” – f. ex. perturbations
- Continuous streams of data (dataflow)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

2

Overview

- Workflow systems
- Multi-step processes, potentially with retries
- Across heterogenous systems

- Batch processing
- “Need to re-encode all of video files”

- Data streaming
- Continuous data streams with real-time processing (not batch!)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

3

Workflow systems

“Workflow system”

- System that orchestrates a flow of work
- Potentially across different systems (e.g. always in microservice

architectures)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

5

Image: AWS

Overall

- Workflow systems execute “trivial” programs
- Linear scripting
- if CONDITION then ACTION1 endif;

ACTION2;
(ACTION3a; ACTION3b);

- State graphs (most common)
- STATE1 { ACTION: …, NEXT-STATE: { CONDITION1: STATE2, … } }

- JSON, XML, graphical UI construction …

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

6

Overall

- Focus isn’t on programmability (of orchestration), but
- Management of state over long periods of time, reliably
- Integrability across different services and activity types
- Scripting is easy – state management is not!
- “Workflow management system” (WfMS) vs.

“Workflow system” (WfS)
- Boundary between WfMS and WfS vague

- Apache Airflow … is it workflow system?
- Task queues – are they WfS? (e.g. one task dispatches further tasks

etc.- implicit task workflow)
- Orchestration vs. choreography – former usually better approach for Wf problems

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

7

Some gotchas

- WfMS history contains a lot of enterprise’y things
- BPM, BPML, WS-BPEL – very much alive over there
- Large focus on visuals – for people who are not really programmers

- No established non-BP* way for workflow definitions
- AWS has SWF and Step Functions (why have just one way?)
- Google Compose (e.g. Apache Airflow)
- Azure Logic Apps
- List of OSS WfS(M): https://github.com/meirwah/awesome-

workflow-engines

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

8

https://github.com/meirwah/awesome-workflow-engines

Start
Activity:

SendMessage
ToQueue

Queue: SendEmail
Params:
to: …
type: welcome

Activity:
WaitFor

Confirmation

Activity:
SendMessage

ToQueue

Timeout: 2 days

Queue: SendEmail
Params:
to: …
type: welcome-
reminder

(Web Service)

“Confirm email”
SendEmail

Queue
Handler
Worker

Notify completion

Activity:
CallServerless

Function

(something)

Finish:
Success

Confirmation
Status

Activity:
WaitFor

Confirmation
Finish:
Failure

Timeout: 2 days

Concepts

- Activities
- Internal vs. external
- Waiting vs. spawning a task

- Asynchronous vs.
synchronous

- Workers
- Open-ended integrations
- “Pulls” pending activity tasks
- “Pushes” completed states

- States and transitions
- Conditional transitions
- Parallel state execution
- Failures and retries

- Note: Terminology wildly
varying across different WfS

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

10

Workflow systems
Pros
- Microservices often natural fit

as parts of WfS
- Small, well-defined boundaries

functionalities and interfaces
- Makes workflows explicit and

easier to develop and
understand

- Common operations well-
tested

- State transitions, retries etc.
- Monitoring usually built-in

Cons
- Centralized

- May hinder development
- Creates centralized dependency

on interfaces
- Workflow “language” often

very restricted
- Need external logic for complex

decisions à complexity
- Asynchronous workers

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

11

Batch processing

Node 1

Django

Django-Cron nightly:
cleanup

cleanup

Node 2

Django

Django-Cron nightly:
cleanup

cleanup

Which one runs?
What if both run?

Batch systems

- Compared to workflow systems
- Instead of orchestrating complex flow of a task …
- Perform a single operation (maybe for a large number of tasks)

- Big data comes to play too
- Operating-level solutions, OSS and IaaS ones

- AWS Batch, Azure Batch, Google DataFlow
- HTCondor, Slurm, …

- Batch systems handle “jobs”
- Which may contain multiple stages and parallel execution

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

14

Distributed storage

file1.mp4

file2.mp4

file3.mp4

file….mp4

file99.mp4

file….mp4

file….mp4

file….mp4

file….mp4

Batch job:
Encode
Input:
file*.mp4
Split: 1 task
per file

Batch
System

Node

Node

Node

Node

Worker cluster

Use cases

- Big Data analytics
- Specialized batch job systems: Hadoop, Spark, …
- Data storage, transport and job design often critical

- Parallelization of simple task on large data set
- Re-encode all videos with new codec?
- Reprocess all archived log files for ingestion into a new system?

- Scientific computing (see Aalto Triton for an example)
- Scheduled batch jobs (aka cronjobs)
- Recurring Extract-Transform-Load jobs across data stores

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

16

http://scicomp.aalto.fi/triton/

Batch systems

Pros
- Automation on task placement

and distribution
- Management, monitoring and

failure handling (retries)
- Conceptually relatively simple

- But for data intensive, devil is
in the details …

- Scheduling easier
- Potential for resource usage

optimization across org

Cons
- Centralized

- Conflicting resource needs
across jobs?

- Rather large hammer for many
problems

- Long running times
- What if daily job gets stuck and

runs >24 hours?
- Time-consuming to develop

and modify

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

17

Data streaming

What if …

- You need results NOW
instead of tomorrow?

- Nightly job cannot run to
completion in 6 hours?

- You can not store all of the
data?

- Data is coming in
continuously?

- Data rate is highly variable?
- You need to pass the data

raw or after pre-processing
to different data
consumers?

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

19

Batch vs. stream processing

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

20

Source: AWS

Examples:
- Log ingestion
- Device sensors

- User interactions (game,
website, mobile app, …)

- News / social media feeds

Data streaming

- Commercial and open source solutions
- AWS Kinesis and its variants, Azure Stream Analytics, Google Cloud

DataFlow
- Apache Kafka, Apache Spark Streaming, …

- Concepts
- Data producer, consumer & stream
- Streams, records, partition keys, … differences between solutions,

also pricing units and resource allocations
- ”Streaming” is not a continuous flow of bytes – instead: large

number of small records (kilobytes)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

21

Other comments

- Many systems are internally streaming architectures or
appear so functionally

- Log and metrics collection (Elasticsearch, Logstash, …)
- Bugs in data consumers

- Debugging …
- What if need to reprocess data?
- What if data retention is short in the stream?

- Generally: The shorter latency in processing, more difficult to
develop and maintain (batch vs. workflow vs. streaming)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

22

Why?

Why asynchronous models?

- Splitting a big task to smaller, sequential pieces
- Easier to develop and debug each in isolation
- Natural for microservice architectures to create service boundaries

- Less prone to failures, easier to recover
- Management can be made HA and resilient
- State transitions ~idempotent à no (big) problem re-running

- Less sensitive to processing delays and load variations
- Not in path of synchronous processing (order fulfilment ~ days!)
- Buffering, capacity scaling

- Many business processes are workflow processes!

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

24

Messaging

Messaging

- Messaging is exchange of asynchronous messages via a 3rd
party

- Message queues: unordered / FIFOs, single message (1-1)
- Publish/Subscribe (PubSub): Message fanout 1-N
- Message bus: PubSub, but goes much into ESBs …
- Specialized systems (Celery – task queue, e.g. asynchronous RPC,

message priorities, …)
- Lots of OSS and commercial solutions

- AWS SQS (FIFO) & SNS (PubSub), Apache ActiveMQ, RabbitMQ,
… (lots and lots), also can use databases

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

26

Sender and receiver
queue = sqs.get_queue_by_name(

QueueName=’request-queue’)

@app.route(“/”)
def hello():
queue.send_message(

MessageBody=”got request”)
return “Big bro knows now!”

queue = …
while True:
for message in \

queue.receive_messages():
print(“Got message: {}”.format(

message.body))
message.delete()

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

27

Why?

Kubernetes example

- Uses Apache ActiveMQ
- Sender: User “registration” web page
- Receiver: Receives registration, demonstrates

choreographed workflow
- All containers run in same pod, can see localhost:<port> of

others

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

28

Why?

- Standard way to decouple systems
- Assuming that MQ system itself is reliable
- “Fire-and-forget” solution
- Naturally suitable for bursty traffic
- Many other solutions build on top of messaging systems!!
- Integrations in workflow systems

- Ease of changes (just one example)
- Originally: A à queue 1 à B

With filtering: A à queue 1 à C à queue 2 à B
(need only to change B’s source queue configuration)

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

29

Problems

- “Fire-and-forget” does not guarantee a receiver
- Received crashed? Incorrect destination? Badly formatted

message?
- Dead Letter Queues – one more resource to monitor

- “Enterpriseyness”
- Problems if too much logic encoded into messaging system (ESB!)

- Centralization
- At-most-once vs. at-least-once delivery

- Always will be either one! Think about Brewer’s theorem too J

1.3.2019
COM-EV Microservice architectures and serverless computing 2019

30

