
ELEC-E8111 – Autonomous Mobile Robots

CONTROL ARCHITECTURES
Mika Vainio, Research Fellow, Aalto

Contents of the lecture
• Motivation and state-of-the-art issues
• Short introduction to control paradigms
• The Hierarchical Paradigm
• Biological foundations for the reactive paradigm
• The Reactive Paradigm
• The Hybrid Paradigm
• AuRA Architecture (example of Hybrid solutions)

2

3

MAINLY BASED ON THESE TWO BOOKS BY RONALD ARKIN AND ROBIN MURPHY

Robotics (along
with information
technology and

biotechnology) is
identified as one

of the key
technologies of
the future (the

new millennium)
CEO Honda

http://www.youtube.com/watch?v=kFgXEkzMq7A&feature=related

Machine Learning

Blockchain

Big Data

Deep Learning

Artificial Intelligence

Virtual Reality

Augmented reality

Data
Mining

ROBOTICS

SMACK IN THE MIDDLE

What is a robot?
• A robot is a re-programmable, multi-functional, manipulator designed to

move material, parts, or specialized devices though variable
programmed motions for the performance of a task (Robotics Industry
Association)

• An intelligent robot is a machine able to extract information from its
environment and use knowledge about its world to move safely in a
meaningful and purposeful manner. (Arkin)

• A robot is a system which exists in the physical world and
autonomously senses its environment and acts in it. (Mataric)

What makes a MOBILE robot?
§ sensors
§ effectors/actuators
§ locomotion system
§ on-board computer system

7

Why is Robotics so hard in reality?
§ Sensors are limited and crude
§ Effectors are limited and crude
§ State (internal and external, but

mostly external) is partially-observable
§ Environment is dynamic (changing

over time)
§ Environment is full of potentially-

useful information

8

Key Issues
• Grounding in reality: not just planning in an

abstract world
• Situatedness: tight connection with the

environment
• Embodiment: having a body
• Emergent behavior: interaction with the

environment
• Scalability: increasing task and environment

complexity

9

10

REAL WORLD TESTING - SpotMini by Boston Dynamics

What is autonomy?
• the ability to make one's own decisions

and act on them

• for robots, the ability to sense the
situation and act on it appropriately

11

…Autonomy
• Autonomy can be complete, as in

autonomous robots, or partial, as in tele-
operated robots.

• examples of autonomous robots: R2D2

• examples of tele-operated robots:
NASA's robots before Pathfinder

12

From scifi...

FILM by S. Kubrick

2001: A Space Odyssey

(1968)

FILM by J. Cameron

The Terminator (1985)

REALLY SHORT HISTORY

...to factories

ABB Industrial
manipulator robot

In 1961 the first industrial robot,
Unimate, joined the assembly line at a
General Motors plant.

Automatically Guided Vehicles

From volcanoes down to abyss

To other planets...

and even to our homes.

THE (fantastic) FUTURE:
4 focal areas

Military robotics. Scary
stuff. Skipping this one.

21

Japanese birth and death rates

Finnish population pyramid in 2017

FOCUS 1

AGING
POPULATIONS

In hospital, elderly and disabled care

Social aspects,
logistics, surgery,
rehabilition,etc.

Left: Paro Therapeutic Robot by AIST
Middle: HelpMate robotic materials transport system by HelpMate Robotics, Inc
Right: da Vinci Surgical System by Intuitive Surgical

SELF-DRIVING CARS

FOCUS 2

Started 1984
The Robotics
Institute at the
School of Computer
Science, Carnegie
Mellon University

In July 1995, the
team took Navlab5
from Pittsburgh to
San Diego on a
proof-of-concept trip,
dubbed "No Hands
Across America",
with the system
navigating for all but
50 of the 2850 miles,
averaging over 60
MPH.

FOUNDATION – NAVLAB project

25

The first competition of the DARPA Grand Challenge was held on
March 13, 2004 in the Mojave Desert region of the United States,
along a 150-mile (240 km) route. None of the robot vehicles finished
the route. No winner was declared, and the cash prize was not
given.
The second competition of the DARPA Grand Challenge began at 6:40am
on October 8, 2005. All but one of the 23 finalists in the 2005 race
surpassed the 11.78 km (7.32 mi) distance completed by the best vehicle
in the 2004 race. Five vehicles successfully completed the 212 km
(132 mi) course.

QUANTUM
LEAP-
DARPA Grand
Challenge

ENTENSIVE TESTING

Supportive
infra:
Self-healing
maps

(HERE)

SENSIBLE 4
MADE IN FINLAND

Drones –
the last
mile
problem

36

FOCUS 3

Amazon Prime

37

By Roksenhorn - Own work, CC BY-SA 4.0

Zipline

Humanoids

ATLAS by Boston
Dynamics

FOCUS 4

CONTROL ARCHITECTURES

THE REAL DEAL

39

Control

Robot control refers to the way in which
the sensing and action of a robot are
coordinated. The many different ways in
which robots can be controlled all fall
along a well-defined spectrum of control.

40

DELIBERATIVE REACTIVE

Purely Symbolic Reflexive

SPEED OF RESPONSE

PREDICTIVE CAPABILITIES

DEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Representation-dependent
Slower response
High-level intelligence (cognitive)
Variable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

41

42

Architecture

§ provides a principled way of organizing a
control system. However, in addition to
providing structure, it imposes constraints
on the way the control problem can be
solved [Mataric]

§ describes a set of architectural
components and how they interact [Dean &
Wellman]

43

Evaluating an Architecture
• support for modularity: does it show good

software engineering principles?
• niche targetability: how well does it work for

the intended application?
• ease of portability to other domains: how

well would it work for other applications or
other robots?

• robustness: where is the system vulnerable,
and how does it try to reduce that
vulnerability?

Control Approaches:

• Reactive Control : Don’t think, (re)act.
• Deliberative Control : Think hard, act later.
• Hybrid Control : Think and act

independently, in parallel.

44

Control Trade-offs:
• Thinking is slow.
• Reaction must be fast.
• Thinking enables looking head (planning) to avoid

bad solutions.
• Thinking too long can be dangerous (e.g., falling off

a cliff, being run over).
• To think, the robot needs (a lot of) accurate

information => world models.

45

Reactive Systems:
• Don’t think, react!
• Reactive control is a technique for tightly

coupling perception (sensing) and
action, to produce timely robotic
response in dynamic and unstructured
worlds.

• Think of it as "stimulus-response".
• A powerful method: many animals are

largely reactive.

46

Limitations:

• Minimal (if any) state.
• No memory.
• No learning.
• No internal models /

representations of the world.

47

Deliberative Systems

• Based on the sense->plan->act model
• Inherently sequential
• Planning requires search, which is slow
• Search requires a world model
• World models become outdated
• Search and planning takes too long

48

Hybrid Systems
• Combine the two extremes

– reactive system on the bottom
– deliberative system on the top
– connected by some intermediate layer

• Often called 3-layer systems
• Layers must operate concurrently
• Different representations and time-scales

between the layers
• The best of both worlds?

49

50

The Hierarchical (aka deliberative)
Paradigm

51

Hierarchical Paradigm…
• Top-down:

plan, plan, plan

• Control-theoretic:
must measure error in order to control
device

• Planning means:
dependence on world models

52

Organization

World model:
1. A priori rep
2. Sensed info
3. Cognitive

PLANSENSE ACT

53

Nested Hierarchical Controller
(Meystel)

54

NHC Planner

55

SPA = Planner-based

SPA has serious drawbacks
• Problem 1: Time-Scale
• Problem 2: Space
• Problem 3: Information
• Problem 4: Use of Plans

56

Problem 1: Time-Scale

• It takes a very (prohibitively) long time to
search in a real robot's state space, as that
space is typically very large

• Real robots may have collections of simple
digital sensors (e.g., switches, IRs), a few
more complex ones (e.g., cameras), or
analog sensors (e.g., encoders, gauges,
etc.) => "too much information”
=> Generating a plan is slow.

57

Problem 2: Space
• It takes a lot of space (memory) to represent

and manipulate the robot's state space
representation.

• The representation must contain all
information needed for planning. =>
Generating a plan can be large.

• Space is not nearly as much of a problem as
time, in practice.

58

Problem 3: Information

• The planner assumes that the
representation of the state space is
accurate and up-to-date =>
The representation must be constantly
updated and checked

• The more information, the better =>
"too little information"

59

Problem 4: Use of Plans

The resulting plan is only useful if:
a) the environment does not change during

the execution of a plan in a way that
affects the plan

b) the representation was accurate enough
to generate a correct plan

c) the robot's effectors are accurate enough
to perfectly execute each step of the plan
in order to make the next step possible.

60

Planners Live On in Robotics

• The SPA approach has not been abandoned,
it has been expanded

• Given the two fundamental problems with
purely deliberative approaches, we can
augment them:
– search/planning is slow, so save/cache important

and/or urgent decisions;
– be ready to respond or re-plan when the plan fails.

61

Biological Foundations of the Reactive
Paradigm

62

Behavior Definition

BEHAVIOR
B

S: Sensory
Input

R: Pattern
of Motor
Actions
(responses)

A behavior is a mapping of sensory inputs to a
pattern of motor actions which are then used to

achieve a task.

Notation: B(S)=R

63

Types of Behaviors
• Reflexive

– stimulus-response, often abbreviated S-R
• Reactive

– learned or “muscle memory”
• Conscious

– deliberately stringing together

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”

64

Ethology: Coordination and Control of
Behaviors

Nobel 1973 in
-von Frisch
-Lorenz
-Tinbergen

www.nobel.se

INNATE RELEASING MECHANISMSINNATE RELEASING MECHANISMS

65

Motivating Example:
Arctic Terns
• Arctic terns live in Arctic (black, white, gray

environment, some grass) but adults have a red
beak

• When hungry, baby pecks at parent’s beak, who
regurgitates food for baby to eat

• How does it know its parent?
– It doesn’t, it just goes for the largest red spot in its field of

view (e.g., ethology grad student with construction paper)
– Only red thing should be an adult tern
– Closer = large red

66

Behavior template

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

67

“the feeding behavior”

Feeding
BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

S=[RED] R= PECK AT RED

B(S)=R

68

“the feeding releaser”

Feeding
BEHAVIOR

RED PECK AT RED

Releaser

internal state

RED &
HUNGRYsensory input

[]][)],([,, feedingBREDATPECKRHUNGRYREDS b=-==

69

Innate Releasing Mechanisms

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

Releaser

Sensory input
and/or

internal state

70

Example: Cockroach Hide

• light goes on, the cockroach turns and runs

• when it gets to a wall, it follows it

• when it finds a hiding place (thigmotrophic), goes in
and faces outward

• waits, then comes out

• even if the lights are turned back off earlier

71

Observation 1:
Fixed Pattern Action

• light goes on, the cockroach turns and runs

• when it gets to a wall, it follows it

• when it finds a hiding place, goes in and faces
outward

• waits, then comes out

• even if the lights are turned back off earlier

72

Observation 2: Exhibits Taxis

• light goes on, the cockroach turns and runs

• when it gets to a wall, it follows it

• when it finds a hiding place (thigmotrophic), goes in
and faces outward

• waits until not scared, then comes out

• even if the lights are turned back off earlier

to light

to wall

to
niche

73

Break into Behaviors
• light goes on, the

cockroach turns and runs

• when it gets to
a wall, it follows it on right

• when it finds a hiding
place, goes in and faces
outward

• waits until not scared, then
comes out

Flee

Follow-
wall

hide

fleeb

wallfollow -b

hideb

74

Cockroach Hiding: the behaviors

ú
ú
ú

û

ù

ê
ê
ê

ë

é
= -

hide

wallfollow

flee

B
b
b
b

75

Find Releasers
• light goes on, the cockroach

turns and runs

• when it gets to a wall, it follows
it on right

• when it finds a hiding place,
goes in and faces outward

• waits until not scared, then
comes out

Flee

Follow-
wall

hide

LIGHT

present?
N

Y

SCARED &
SURROUNDED

present?
N

BLOCKED &
SCARED

present?
N Ooops, need internal state:

Scared
Ooops, need internal state:

Scared

76

Internal State Set
• light goes on, the

cockroach is scared and
turns and runs

• when it gets to a wall, it
follows it on right

• when it finds a hiding
place, goes in and faces
outward

• waits until not scared,
then comes out

Flee

Follow-
wall

hide

LIGHT

present?
N

Y

SCARED &
SURROUNDED

present?
N

BLOCKED &
SCARED

present?
N

SCARED

77

Cockroach Hiding

ú
ú
ú

û

ù

ê
ê
ê

ë

é
= -

hide

wallfollow

flee

B
b
b
b

ú
ú
ú

û

ù

ê
ê
ê

ë

é
--=

)&(
)&),(

SCAREDSURROUNDED
SCAREDRIGHTONBLOCKED

LIGHT
S anglel

78

Action (Responses)
• light goes on, the

cockroach gets scared,
turns and runs

• when it gets to a wall, it
follows it

• when it finds a hiding
place, goes in and faces
outward

• waits until not scared,
then comes out

Flee

Follow-
wall

hide

LIGHT

present?
N

Y

SCARED &
SURROUNDED

present?
N

BLOCKED &
SCARED

present?
N

SCARED

steer random,
drive forward

steer =F(deg to wall)
drive forward const.

steer =F(deg to wall)
drive forward const.

stop

79

Cockroach Hiding

ú
ú
ú

û

ù

ê
ê
ê

ë

é
= -

hide

wallfollow

flee

B
b
b
b

ú
ú
ú

û

ù

ê
ê
ê

ë

é
--=

)&(
)&),(

SCAREDSURROUNDED
SCAREDRIGHTONBLOCKED

LIGHT
S anglel

ú
ú
ú

û

ù

ê
ê
ê

ë

é

==
==

==
=

)),(%(
))(),(%(

))(,(

slowdrivesurroundedfsteerr
SCAREDfdriveblockedfsteerr

SCAREDfdriverandomsteerr
R

ú
ú
ú

û

ù

ê
ê
ê

ë

é
= -

hide

wallfollow

flee

r
r
r

R

80

What happens when there’s a
conflict from concurrent behaviors?

?)*(RGC=r

81

• If the rules are not triggered by mutually-exclusive
conditions, more than one rule can be triggered in
parallel, resulting in two or more different actions
being output by the system.

• Deciding among multiple actions or behaviors is
called arbitration, and is in general a difficult
problem.

You need arbitration

82

Arbitration can be done based on:

• a fixed priority hierarchy (processes have pre-
assigned priorities)

• a dynamic hierarchy (process priorities change
at run-time)

• learning (process priorities may be initialized
or not, and are learned at run-time, once or
repeatedly/dynamically)

83

Schema Theory

SCHEMA is used in cognitive science and ethology to refer to a
particular organized way of perceiving cognitively and responding
to a complex situation or set of stimuli

• a behavior is a schema, consists of
– perceptual schema
– motor schema
– other behaviors

84

Fly Snapping

Ex. Fly Snapping Behavior IRM

snap(blob)track(blob)

p=x,y,z,
l=100%

snap,
100%

small moving
dark blob

Releaser:
small moving dark blob

86

Schema Instantiation (SI)

snap(blob)track(blob)

x,y,z,
100%

snap,
100%

Releaser:
small moving dark blob

present? N
Y

/dev/null

87

Schema/Schema Instantiation

behavior
schema

releaser

present?
N

1.

snap(blob)track(blob)track(blob) snap(blob)snap(blob)track(blob)

Perceptual
Schema Library

Motor
Schema Library

2.

snap(blob)track(blob)

x,y,z,
100%

3.

88

Advantages

• modular

• can assemble new behaviors from existing
schemas
– learning by experimentation

• can substitute alternatives
– reroute nerves

89

Back to Toads and Frogs: Instantiation
for each eye

snap,
100%

snap(blob)track(blob)

x,y,z,
100%

Releaser:
small moving dark blob

present?
N

Y
/dev/null

snap,
100%

snap(blob)track(blob)

x,y,z,
100%

Releaser:
small moving dark blob

present?
N

Y
/dev/null

Left eye

Right eye

Snap at
vector sum
(middle)

90

General Principles

• All animals possess a set of behaviors

• Releasers for these behaviors rely on both internal
state and external stimulus

• Perception is filtered; perceive what is relevant to the
task

91

The Reactive Paradigm

92

Review: Lessons from Biology
• Programs should decompose complex actions into

behaviors. Complexity emerges from concurrent
behaviors acting independently

• Agents should rely on straightforward activation
mechanisms such as IRM

• Perception filters sensing and considers only what is
relevant to the task (action-oriented perception)

• Behaviors are independent but the output may be
used in many ways including: combined with others to
produce a resultant output or to inhibit others

93

Hierarchical Organization is
“Horizontal”

94

More Biological is “Vertical”

95

Reactive Robots

• Most apps are programmed with this paradigm
• Biologically based:

– Behaviors (independent processes), released by perceptual or
internal events (state)

– No world models or long term memory
– Highly modular, generic
– Overall behavior emerges

SENSE ACT

RELEASER
behavior

96

Example 1: Robomow

• Behaviors?
• Random
• Avoid

– Avoid(bump=obstacle)
– Avoid(wire=boundary)

• Stop
– Stop(tilt=ON)

• All active www.friendlymachines.com

Steps in Designing a Reactive
Behavioral System

97

Describe the task

Describe the robot

Describe the environment

Specification
& Analysis:
ecological
niche

Implement & refine each behavior

Test each behavior independently

Implementation
& unit testing

Test behaviors together System
Testing

Describe how the robot should
act in response to its environment

Design

98

Design Tool: Behavior Table
An agent is attracted to light. If it sees light, it heads in that direction.
If it encounters an obstacle, it turns either left or right, favoring the
direction of the light. If there is no light, it sits and waits. But if an
obstacle appears, the agent runs away.

1. photropism

2. Obstacle avoidance

99

Behavior Table

Releaser Behavior Motor
Schema

Percept Perceptual
Schema

Light phototropism move2Light()
:Attraction

Light:
direction &
strength

Brightest(di
r), atLight()

Range
<tasked
level>

Obstacle
avoidance

avoid(): turn
left or right;
runaway()

proximity Obstacle()

An agent is attracted to light. If it sees light, it heads in that direction.
If it encounters an obstacle, it turns either left or right, favoring the
direction of the light. If there is no light, it sits and waits. But if an
obstacle appears, the agent runs away.

100

Reactive: 2 main styles
• Historically, there are two main styles of creating a

reactive system
– Subsumption architecture

• Layers of behavioral competence
• How to control relationships

– Potential fields
• Concurrent behaviors
• How to navigate

• They are equivalent in power

101

Subsumption:
Rodney Brooks

https://people.csail.mit.edu/brooks/

Panasonic
Professor of
Robotics
(emeritus) at MIT.

102

The Subsumption Architecture (Brooks 1985)

103

The Subsumption Architecture

• systems are built from the bottom up
• components are task-achieving actions/behaviors (not functional

modules)
• components can be executed in parallel
• components are organized in layers, from the bottom up
• lowest layers handle most basic tasks
• newly added components and layers exploit the existing ones
• each component provides and does not disrupt a tight coupling

between sensing and action
• there is no need for internal models: "the world is its own best

model"

104

• Subsumption systems grow from the bottom
up, and layers can keep being added,
depending on the tasks of the robot.

• How exactly layers are split up depends on
the specifics of the robot, the environment,
and the task.

• There is no strict recipe, but some solutions
are better than others, and most are derived
empirically.

105

• The inspiration behind the Subsumption
Architecture is the evolutionary process, which
introduces new competencies based on the
existing ones.

• Complete creatures are not thrown out and new
ones created from scratch; instead, solid, useful
substrates are used to build up to more complex
capabilities.

106

• The original Subsumption Architecture was
implemented using a language based on finite
state machines (FSMs) augmented with a very
small amount of state (AFSMs), themselves
implemented in Lisp.

• An AFSM can be in one state at a time, can
receive one or more inputs, and send one or more
outputs AFSMs are connected by communication
wires, which pass input and output messages
between them.

Situated Automata
• A formal notion of finite state machines whose

inputs are connected to sensors and whose
outputs are connected to effectors are called
situated automata.

• Situated means existing in and interacting with a
complex world, and automata is the formal name
for FSMs (formally: finite state automata).

• Situated automata are used to create reactive
principled control systems.

107

FSA Diagrams

• States and state transitions are most easily
encoded in finite state automata and drawn as
finite state diagrams

• The states of the diagrams can also be
behaviors, so the diagrams show sequences
of behavior transitions

• These are called finite state acceptors
• Acceptor M is a quadruple (Q,d,q0,F)

108

Finite State Acceptors
• M (Q, d,q0,F):

– Q is the set of legal behavioral states
– d is a transition function from a state and an

input to the next state (can be represented as
a table)

– q0 is the starting behavioral configuration
– F is the set of accepting states (a subset of

Q, indicates completion)

109

110

FSA: M={Q,d,q0,F}

• Q: all the states, each is “q”- behaviors
• d: transition function, d(q,s)= new behavior
• q0: Start state(s)- part of Q
• F: Terminating state(s)- part of Q

search

1

load

1

end
1

notepad

1

attack
1

start
1

ds.a da.l

da.a

recover

1

da.r

111

Arbitration in Subsumption
• Arbitration: deciding who has control
• Inhibition: prevents output signals from reaching

effectors
• Suppression: replaces input signal with the

suppressing message
• The above two are the only mechanisms for

coordination => Results in priority-based
arbitration, the rule or layer with higher priority takes
over, i.e., has control of the AFSM

112

Behavioral ModuleInput
Wires

Inhibitor

Suppressor

 Output
 Wires

Reset

I

S
R

113

Designing in Subsumption
• Qualitatively specify the overall behavior

needed for the task
• Decompose that into specific and independent

behaviors (layers)
• The layers should be bottom-up and

consisting of disjoint actions
• Ground low-level behaviors in the robot’s

sensors and effectors
• Incrementally build, test, and add

114

Subsumption Philosophy

• Modules should be grouped into
layers of competence

• Modules in a higher lever can
override or subsume behaviors
in the next lower level
– Suppression: substitute input

going to a module
– Inhibit: turn off output from a

module

• No internal state in the sense
of a local, persistent
representation similar to a world
model.

115

Subsumption Evaluation
• Strengths:

– Reactivity (speed, real-time nature)
– Parallelism
– Incremental design => robustness
– Generality

• Weaknesses:
– Inflexibility at run-time
– Expertise needed in design

Potential Fields:
Ronald Arkin

https://www.cc.gatech.edu/aimosaic/faculty/arkin/index.html

Regents' Professor, Director
of Mobile Robot Laboratory
School of Interactive
Computing, College of
Computing, Georgia Tech

117

Potential Fields Philosophy

• The motor schema component of a behavior can be
expressed with a potential fields methodology
– A potential field can be a “primitive” or constructed from

primitives which are summed together
– The output of behaviors are combined using vector summation

• From each behavior, the robot “feels” a vector or force
– Magnitude = force, strength of stimulus, or velocity
– Direction

• But we visualize the “force” as a field, where every point in
space represents the vector that it would feel if it were at
that point

118

Schema Theory (as presented earlier)

SCHEMA is used in cognitive science and ethology to refer to a
particular organized way of perceiving cognitively and responding
to a complex situation or set of stimuli

• a behavior is a schema, consists of
– perceptual schema
– motor schema
– other behaviors

119

Motor Schemas

• Motor schemas are a type of behavior encoding:
They are based on schema theory (Arbib);
Provide large grain modularity; Distributed
concurrent schemas used; Based on
neuroscience and cognitive sci.

• Represented as vector fields
• Composed into “assemblages” by fusion (not

competition)

120

ES1

ES2

ES3

INTERNAL
SENSORS

MOTORS

TRANSMITTER
 SCHEMAS

VECTOR

ROBOTMOTOR SCHEMASENVIRONMENTAL
 SENSORS

EN
V

IR
O

N
M

E
N

T

BROADCAST
 MEDIUM

RS1 IS1

IS2

TS1

TS2

RS2 RS3

PS1

PS3

PS2

Key:
RS - Receptor Schema
TS - Transmitter Schema
PS - Perceptual Schema
MS - Motor Schema
IS - Internal Sensor
ES - Environmental Sensor

121

Schema Representation
• Responses represented in uniform vector

format
• Combination through cooperative coordination

via vector summation
• No predefined schema hierarchy
• Arbitration is not used - gain values control

behavioral strengths

122

Designing with Schemas

• Characterize motor behaviors needed
• Decompose to most primitive level, use biological

guidelines where appropriate
• Develop formulas to express reaction
• Conduct simple simulations
• Determine perceptual needs to satisfy motor schema

inputs
• Design specific perceptual algorithms
• Integrate/test/evaluate/iterate

123

Example: Run Away via Repulsion

124

5 Primitive Potential Fields

a) Uniform b) Perpendicular c) Attractive d) Repulsive e) Tangential

125

Combining Fields for
Emergent Behavior

obstacleobstacle

goal

If robot were dropped anywhere on this grid,
it would want to move to goal and avoid obstacle:

Behavior 1: MOVE2GOAL
Behavior 2: RUNAWAY

The output of each independent behavior is a vector,
the 2 vectors is summed to produce emergent behavior

obstacle

goal

126

Note: In this example, repulsive field only extends for 2 meters;
the robot runs away only if obstacle within
2 meters

Note: in this example, robot can sense the
goal from 10 meters away

Fields and Their Combination

127

Path Taken

• If robot started at this location, it would take the following path
• It would only “feel”the vector for the location, then move accordingly,

“feel” the next vector, move, etc.
• Pfield visualization allows us to see the vectors at all points, but robot

never computes the “field of vectors” just the local vector

Robot only feels
vectors for this

point when it (if)
reaches that point

128

Example: follow-corridor or follow-
sidewalk

Perpendicular Uniform

Combined

Note use of
Magnitude profiles:
Perpendicular decreases

129

But how does the robot see a wall
without reasoning or intermediate
representations?

• Perceptual schema “connects the dots”, returns relative
orientation

PS:
Find-wall

MS: Perp.

MS: Uniform
S

Sonars

orientation

130

Strengths and Weaknesses

• Advantages
– Easy to visualize
– Easy to build up software libraries
– Fields can be parameterized
– Combination mechanism is fixed, tweaked with gains
– Support for modularity and parallelism
– Run-time flexibility

• Disadvantages
– Local minima problem (sum to magnitude=0)

• Box canyon problem
– Jerky motion

HYBRID SOLUTIONS

131

Inventing Hybrid Control

• The basic idea is simple: we want the
best of both worlds (if possible)

• That means to combine reactive and
deliberative control

• This implies combining the different
time-scales and representations

• This mix is called hybrid control

132

Key Questions

• How does the architecture distinguish
between reaction and deliberation?

• How does it organize responsibilities in the
deliberative portion?

• How does overall behavior emerge?

Common Functionalities

• Mission planner

• Cartographer

• Sequencer

• Behavioral (resource) manager

• Performance monitor/problem solving agent

Mission planner

Mission planner interacts withe the human operator,
operationalizes the commands into robot terms and
creates the actual mission plan.

135

Cartographer

Cartographer is responsible for creating, storing and
maintaining map (or any relevant spatial information)
plus methods and routines to access the data. It often
contains a global word model and relevant knowledge
representations.

136

Sequencer

A sequencer agent generates the set of behaviors to
accomplish a subtask and determines the needed
sequences and activation conditions. A sequence is
often represented as a finite state machine and the
sequencer should either generate it or be able to
dynamically modify it accordingly.

137

Behavioral (resource) manager
This manager allocates resources to planned behaviors,
mainly by selecting them from libraries of schemas. Its
job includes for example selecting a suitable active
sensor set for task at hand. Remember that you want to
have redundancy to secure the perception, but you don’t
want to overdo it for several reason (e.g., time, energy,
CPU usage etc.) Less is often more.

138

Performance monitor/problem solving
agent

This agent tracks how well the robot is doing its job, i.e.
how well (and fast) it is achieving the mission objectives.
It might include mechanisms to detect and identify
various problems and provide a set of solutions for them.
For example by monitoring the energy level and
proposing when and where to go when the level goes
below some safety threshold.

139

Organization: Plan, Sense-Act

SENSE

PLAN

ACT

141

Sensing Organization

BEHAVIOR

BEHAVIOR

BEHAVIOR

SENSOR 1

SENSOR 2

ACTUATORS

WORLD MAP/
KNOWLEDGE REP

SENSOR 3

virtual sensor

Deliberative functions
*Can “eavesdrop”
*Can have their own
Sensors
*Have output which
Looks like a sensor
Output to a behavior
(virtual sensor)

Organizing Hybrid Systems
• A hybrid system typically consists of three

components:
– a reactive layer
– a planner
– a layer that puts the two together

• Hybrid architectures are often called three-
layer architectures

• The planner and the reactive system are
both standard, as we have covered them
so far

142

The Magic Middle
• The middle layer has a hard job:

– 1) compensate for the limitations of both the
planner and the reactive system

– 2) reconcile their different time-scales
– 3) deal with their different representations
– 4) reconcile any contradictory commands between

the two

• This is the challenge of hybrid systems =>
achieving the right compromise between the
two ends

143

Dynamic Re-planning
• Reaction can influence planning
• Any "important" changes discovered by the

low-level controller are passed back to the
planner in a way that the planner can use to
re-plan

• The planner is interrupted when even a partial
answer is needed in real-time

• The reactive controller (and thus the robot) is
stopped if it must wait for the planner to tell it
where to go.

144

Planner-Driven Reaction
• Planning can influence reaction
• Any "important" optimizations the planner

discovers are passed down to the reactive
controller

• The planner’s suggestions are used if they are
possible and safe => Who has
priority, planner or reactor?

• It depends, as we will see...

145

Universal Plans
• Suppose for a given problem, all possible

plans are generated for all possible situations
in advance, and stored (e.g., automated tic-
tack-toe)

• If for each situation a robot has a pre-existing
optimal plan, it can react optimally, be
reactive and optimal, it has a universal plan
(These are complete reactive mappings)

146

Viability of Universal Plans

• A system with a universal plan is reactive;
the planning is done at compile-time, not at
run-time

• Universal plans are not viable in most
domains, because:
– the world must be deterministic
– the world must not change
– the goals must not change
– the world is too complex (state space is too large)

147

148

Hybrid Summary

• P,S-A, deliberation uses global world
models, reactive uses behavior-specific or
virtual sensors

• Architectures generally have modules for
mission planner, sequencer, behavioral mgr,
cartographer, and performance monitoring

• Deliberative component is often divided into
sub-layers (sequencer/mission planner or
managers/mission planner)

• Reactive component tends to use
assemblages of behaviors

Relative Strengths
(Hybrid Control)

• Deliberative planners
– Rely heavily on world models
– Can readily integrate world knowledge
– Have broader perspective and scope

• Reactive & behavior-based systems
– Afford modular development
– Provide real-time robust performance in dynamic world
– Provide for incremental growth
– Tightly coupled to incoming sensory data

149

Example: AuRA

• Roland C. Arkin (1986)
• Planning is viewed as configuration
• Initial A* planner integrated with schema-

based controller
• Provides modularity, flexibility, and adaptability

150

AuRA Architectural Layout

AuRA Architectural Layout

Cartographer

Sequencer

Mission
Planner

Behavioral
manager
(mgr+schemas)

Performance
Monitoring

Emergent behavior

READ THE ATTACHED JOURNAL PAPER

153

Ronald C. Arkin & Tucker Balch (1997) AuRA: principles and
practice in review, Journal of Experimental & Theoretical
Artificial Intelligence, 9:2-3, 175-189, DOI:
10.1080/095281397147068

https://doi.org/10.1080/095281397147068

React when you can, plan when you must.

154

-Tom Mitchell, CMU

Robot control refers to the way in which the sensing and action of a robot
are coordinated. The many different ways how robots can be controlled all
fall along a well-defined spectrum of control ranging from purely symbolic,
detailed representation dependent planning based systems all the way to
reactive, representation-free real-time solutions.

Robot architecture provides a structured and principled way of organizing a
control system. It defines the components, their interactions, prevailing
constraints and operations how to survive and achieve the given mission
objectives.

