Designing for Sustainable Bio-based Materials

Pirjo Kääriainen 4.3.2019 pirjo.kaariainen@aalto.fi @PirjoKaariainen

Design Yesul Woo CHEMARTS 2018 photo Eeva Suorlahti

Pirjo Kääriäinen Professor of practice, Design driven fibre innovation ARTS Design + CHEM Bio²

My heart: Nature Creativity Explorations **My background:** Textile industry Design + Management Entrepreneurship **My passion:** Materials research Design + Science Interdisciplinarity

Today's topics:

- 1) Bio-based materials
- 2) About new production technologies
- 3) Designers in material research

Wood dust + nanocellulose by Heidi Turunen, DWoC 2017

Biomaterials? Bio-based materials?

Biologiset materiaal

Kalk

SUOMI VOI ELÄÄ KIERTÄVISTÄ BIOMATERIAALEISTA

Taustals on monte telijili	Report of Syndholeclastra	
Anan vine vuosine walet meteriaalti ovat Uihtened huomotavean kasvaun, jota takevat arittiin taajatuhtinue jahehiyopperes	Surralson - Surralson	-
Valent regionation photosarvo on users feature faces factors programmed types monocated accounterchipsets have spectrament protocologians	 sninkrja korto lakuleriti hulguessamata nuskakri 	- 32
Samar alcor biotetrate all jo biomeses org rotationese with primitical sciences in imatemeterizations, a hand at the other stice	Manufacture and sources	_
Karlalakoa ortaralaren railye a - tekdituzter yinanat	#1118 #817 7815 1815	
Kasingotartiasi bionatariasiasian artikin suuri, sampin kieritmisukasia Witan Suuri voi käntimaana yhdeitää nämä Kasinamahdottausikit?	-11111	11

G PÓVRY

Syntaettiset materias

Kals

Kuvio 1. Muutamia esimerkkejä kudosteknologian biomateriaaleista

inel rea

KUDOSTEKNOLOGIAN BIOMATERIAALIT

GROVE

S POYRY

JOHTOPÄÄTÖKSET

- inches

seurantes seurantes versione

S PÖYRY SITRE

1. Bio-based materials

www.CelluloseFromFinland.fi

75% of Finland is covered by forests 60% more wood than 100 years ago

Richness of the Finnish nature How to combine ecological values, nature experiences and economical aspects in a sustainable way?

Finland's top export products 2017

2. Diesel fuel 4,5 bill. EUR

8. Electric generators and motors 1,4 bill. EUR

3. Stainless steel

9. Earth movers and

similar machinery

1,2 bill. EUR

excavators and other

2,7 bill. EUR

 Motor vehicles for personal transport
 2,4 bill. EUR

10. Special machinery 1,1 bill. EUR

7 Ships and boats 1,5 bill. EUR

What about design products? Sustainable fashion? Cosmetics?

Transforming Reinventing Recycling Growing Designing

Pathways towards sustainable materials

Concept	Materials	Enablers	Objectives
Transforming natural raw materials or industry/agriculture side streams/waste into new materials	Wood, plants, algae - anything containing cellulose, or protein- based materials such as feathers etc.	New or renewed, sustainable and resource-efficient production processes	Only renewable raw materials Sustainable processes with non toxic chemicals
Reinventing traditional materials and production technologies	Willow, hemp, nettle, wood etc. Natural dyes and non toxic chemicals based on natural ingredients	Sustainable cultivation systems, and renewed production processes	Learning from the nature Learning from the past Combining tradition with new technologies
Recycling all materials	For example textiles like cotton, polyester, <u>lyocell</u> ; plastics, electronics –everything!	Efficient collecting and mechanical and chemical etc. processes	Less need for virgin materials Minimizing waste Closing the loop
Growing new materials	Microbe or fungi with proper nutrition	Biofabrication processes Synthetic biology Bioart, biodesign	No waste materials No extra production phases
Designing materials with biotechnologies	Living cells from various sources, treated with genetic engineering	Synthetic biology New production processes	Totally new materials with designed material properties Production processes inside factories

Modified from: Niinimäki, Salolainen, Kääriäinen (2018) Opening up New Textile Futures through Collaborative Rethinking and Remaking

Example: Transforming

Designing Cellulose for the Future

Design Driven Value Chains in the World of Cellulose (DWoC) is an interdisciplinary materials research project 2013-2018, funded by Tekes (Now Business Finland) <u>www.CelluloseFromFinland.fi</u>

Fireretardant nanocellulose coating for wood by Heidi Turunen & VTT DWoC 2017 Light-weight nanocellulose stool by Tiina Härkäsalmi, DWoC 2017

THE SULAPAC STORY

The inspiration for Sulapac's innovation lies in the Finnish forest. Founders Suvi Haimi and Laura Kyllönen wanted to develop a beautiful and ecological packaging material that would help to reduce the plastic waste.

Example: Transforming natural materials into textiles

Ioncell, new sustainable technology to produce high quality textile fibres from wood or cellulosic waste by Prof. Sixta's team (with the University of Helsinki)

Non toxic, waterproof textile finishing by Prof. Österberg's research team

Global fiber market

Global fiber consumption 2015 94 million tons 2017: 105 million tons

¹⁾ Wood-based and cotton linter-based cellulose fibers

Source: ICAC, CIFRS, TFY, FEB, Lenzing estimates Source: Lenzing annual reports 2015, 2017

Photo Eeva Suor

In addition to loncell, several other technologies using cellulosic raw materials for textile fibre production are currently developed in Finland: carbamate technology by *Infinited Fibre*, BioCelSol by VTT, and another project using ionic liquids by *MetsäFibre*.

Spinnova is developing different kind of process for textile fibres without dissolving the pulp.

Signal of change / Manure couture - making cow manurebased fabric

YOUR NEXT HANDBAG MIGHT BE MADE OUT OF WINE

News Collaborations Learn More

This is Zoa™. The world's first bioleather materials brand. Able to be any density. Hold to any mold. Create any shape. Take on any texture. Combine with any other material. Be any size, seamlessly. A liquid. A solid. An anomaly. Grown with the intention for making things of real value, that exist not just to serve humans, but to coexist with everything.

Recycling: Raw materials for the future

English: Classified home trash for aid the recycle process. Numbers for description have been added. A original copy without numbers can be submitted by me on request. 1) glass bottles, 2) thin plastic, 3) thick plastic, 4) cardboard, 5) no classified, 6) cans, 7) paper, 8) polystyrene, 9) glass fragments, 10) batteries, 11) metals, 12) organics, 13) tetrapak, 14) fabric, 15) wc.

A Example: Recycling for textile materials

Recycling and upcycling waste materials (textile waste, paper, cardboard) by loncell process by Prof. Sixta's research team

Circular process enabling circular economy

Finch Designs Recycles Plastic Bottles Into Rain Capes, Swimsuits

Designed by London-based Alexander Taylor, the shoes are made using Adidas' existing footwear manufacturing processes but the usual synthetic fibres are replaced with yarns made from the recycled Parloy Ocean Plastic.

Growing of materials

Growing of materials

MYLO[®]

We're using mycelium, the underground root structure of mushrooms, to make an entirely new, leather-like material.

http://www.fungal-futures.com/ MycoTEX-Mycelium-Textile By Aniela Hoitnik

Designing materials with biotechnologies

New Silk - Bio-based production of silk-like materials, research project inspired by spider silk by Prof. Linder's research team

2) About new production technologies

Photo Eeva Suorlahti

Foam forming VTT 2017

DESIGN DRIVEN VALUE CHAINS IN THE WORLD OF CELLULOSE **DWoC**

Foam forming saves water

Photo Eeva Suorlahti

Foam formed, acoustic panels from wood pulp by Tiina Härkäsalmi + VTT DWoC 2017

Prototype for biodegradable shoes by Saara Kinnunen HAMK + VTT DWoC 2017

3D printing: New technology, new visual language

Carole Collet

Fashion designer Suzanne Lee Biocouture 2014

Grow your products?

CellPod by Niko Räty 2017 in collaboration with VTT for food production

3) Designers in material research

Why Design with Material Research?

- Design process includes an integrative and holistic approach
- Design process provides methods for cocreation, quick prototyping and testing
- Designers are often future-oriented
- Designers can communicate even nonexisting things and speculate with future through visualisation and prototyping

>supports very slow material development processes by making them understandable

3D printed cellulose objects, DWoC 2017 by Ville Klar, Anastasia Ivanova, Pyry Kärki + VTT

Design (+designers) can enhance and speed up material development through iterative hands-on prototyping

Foam formed heating panel made of cellulose and carbon fibres, DWoC 2017 Designer Anastasia Ivanova

In DWoC design researchers were

AGENT OF CHANGE: Embedding design, architecture and design thinking in traditional pulp and paper business

CATALYZER: Generating new design driven activities and ideas

DESIGNER: Exploiting the methods of explorative prototyping and concept development – always considering the user (BtoB, BtoC)

TREND FORECASTER & VISUALIZER: Exploring, documenting and visualizing scenarios of how materials could be used

CURATOR & COMMUNICATOR: Disseminating the project findings and results FACILITATOR: Engaging and inspiring student society

Our Recipe for Successful Collaboration

Pirjo Kääriäinen & Liisa Tervinen

This recipe is based on our personal experiences and on several discussions with colleagues who have been working in creative multidisciplinary teams. The ingredients are well tested and we can warmly recommend them. Feel free to test portions and methods according to your own ideas and preferences.

FOR 2+ PEOPLE

- * A mix of open-minded people
- Try to find different species, preferably curious ones
- × 1−2 inspiring encounters
- * A bowl of support in the form of resources
- * At least 10 portions of communication
- * A handful of action & doing things together
- × A large spoonful of courage Detailed maps can't be provided beforehand. To find something unseen, you have to explore and experiment. And fail.
- * Lots of mutual respect and goodwill
- * A Lot of Patience
- * Add another 10 portions of communication to understand each other's language. You can't have too much!
- 1 Enable inspiring encounters and let people find their shared interests. Stir if needed.
- 2 When the seeds of collaboration emerge, acknowledge them and let them grow. However, some of them might not survive – don't worry, you can try again. And not all of them will grow into anything at all.
- 3 Nurture promising seedlings carefully but not too much; they should have enough space and freedom to grow courageous and persistent.
- 4 Check that the collaboration is beneficial for all parties; it is equal and fair, talk and find a mutual agreement on IPR and acknowledgement.
- 5 Talk, talk and talk about the collaboration and process with each other. Then share it with others too as an inspiring unique story – your story.
- 6 Be proud of the journey and what has been achieved.
- 7 Repeat steps 1-5 until you are happy.
- 8 At its best, this all will lead into blooming, new, world changing and worth the effort.

'What becomes of the design process when working with living materials? If we can turn a yeast into a living factory, what language will designers need to learn? What are the ethical implications of biofabrication?'

Carole Collet

Experimenting with waste: Dog hair Cat tail (plant) Chicken feathers Saw dust Nanocellulose Potatoes Starch Coffee grains ...what else?

Photos Eeva Suorlahti

Thank you!

Courses: Design Meets Biomaterials CHEMARTS Summer School UWAS Diving into Fashion Technologies Bio Materiality (partly)

<u>chemarts.aalto.fi</u> <u>facebook.com/chemarts.aalto</u> Instagram: aaltochemarts