Diagnostic Tests

Some practical ways to check the residual assumptions of the simple Classical Linear Regression Model (CLRM)

Tomi Seppälä Aalto University School of Business 2017

How to check graphically The Assumptions of the Simple Classical Linear Regression Model (CLRM)

- Consider the simple classical linear regression model $y_t = \alpha + \beta x_t + u_t$ estimated from a sample by $y_t = \hat{\alpha} + \hat{\beta} x_t + \hat{u}_t$, t = 1, 2, ..., T
- Let $\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t$ be the predicted value for observation t
- <u>Assumption</u> 1. $E(u_t) = 0$ 2. $Var(u_t) = \sigma^2$ 3. $Cov(u_t,u_t) = 0$ 4. $Cov(u_t,x_t) = 0$ 5. $u_t \sim N(0,\sigma^2)$ • <u>Assumption</u> 1. $E(u_t) = 0$ 2. $Var(u_t) = 0$ 3. $Cov(u_t,u_t) = 0$ 5. $u_t \sim N(0,\sigma^2)$ • <u>Graphical method</u> Plot $(\hat{u}_t against t (always true if estimated using OLS)$ $Homoscedasticity: plot <math>(t, \hat{u}_t)$ and (x_t, \hat{u}_t) ; look at the variation Plot $(\hat{u}_t, \hat{u}_{t+1})$ to look for possible autocorrelation of first order May also plot $(\hat{u}_t, \hat{u}_{t+k})$ for higher order autocorrelation k>1 Plot (x_t, \hat{u}_t) ; look for possible dependence Histogram compared to normal curve or QQ-plot (straight line if normal)

How to test The Assumptions of the Simple Classical Linear Regression Model (CLRM)

- Consider the simple classical linear regression model $y_t = \alpha + \beta x_t + u_t$ estimated from a sample by $y_t = \hat{\alpha} + \hat{\beta} x_t + \hat{u}_t$, t = 1, 2, ..., T
- Let $\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t$ be the predicted value for observation t
- Assumption Tests Always true if estimated using OLS; good to check that $\Sigma \hat{u}_{t} = 0$ 1. $E(u_t) = 0$ 2. Var $(u_t) = \sigma^2$ White's test for heteroscedasticity: Estimate quadratic regression $\widehat{u}_{t}^{2} = \widehat{\alpha}_{0} + \widehat{\beta}_{0} x_{t} + \widehat{\beta}_{1} x_{t}^{2} + \widehat{\varepsilon}_{t}$ (should be insignificant, otherwise $Var(u_t)$ depends on x_t) 3. Cov $(u_i, u_j) = 0$ Durbin-Watson test for possible autocorrelation of first order Breusch-Godfrey for higher order autocorrelation 4. Cov $(u_t, x_t) = 0$ Calculate correlation (should be insignificant) or Estimate linear regression $\hat{u}_{t} = \hat{\alpha}_{1} + \hat{\beta}_{1}x_{t} + \hat{\varepsilon}_{t}$ (should be insignificant) 5. $u_t \sim N(0, \sigma^2)$ Jarque-Bera-test or some other normality test (e.g. Shapiro-Wilk test)