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Abstract

A stochastic subgrid model for large-eddy simulation of atomizing spray is developed. Following
Kolmogorov!s concept of viewing solid particle-breakup as a discrete random process, atomization of
liquid blobs at high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup
events, independent of the initial droplet size. Kolmogorov!s discrete model of breakup is rewritten in the
form of differential Fokker–Planck equation for the PDF of droplet radii. Along with the Lagrangian
tracking of spray dynamics, the size and number density of the newly produced droplets is governed by the
evolution of this PDF in the space of droplet-radius. The parameters of the model are obtained dynamically
by relating them to the local Weber number with two-way coupling between the gas and liquid phases.
Computations of spray are performed for the representative conditions encountered in idealized diesel and
gas-turbine engine configurations. A broad spectrum of droplet sizes is obtained at each location with co-
existence of large and small droplets. A novel numerical algorithm capable of simultaneously simulating
individual droplets as well as a group of droplets with similar properties commonly known as parcels is
proposed and compared with standard parcels-approach usually employed in the computations of multi-
phase flows. The present approach is shown to be computationally efficient and captures the complex
fragmentary process of liquid atomization.
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1. Introduction

Liquid spray atomization plays a crucial role in analyzing the combustion dynamics in many
propulsion related applications. This has led researchers to focus on modeling of droplet
formation in numerical investigations of chemically reacting flows with sprays. In the tradi-
tional approach for spray computation, the Eulerian equations for gaseous phase are solved
along with a Lagrangian model for particle transport with two-way coupling of mass, mo-
mentum, and energy exchange between the two phases (Dukowicz, 1980). The spray atom-
ization process is modeled by standard deterministic breakup models based on Taylor analogy
breakup (TAB) (O!Rourke and Amsden, 1987) or wave (Reitz, 1987) models. Liquid "blobs!
with the size of the injector diameter are introduced into the combustion chamber and undergo
atomization based on the balance between aerodynamic and surface tension forces acting on
the liquid phase.

In the TAB model (O!Rourke and Amsden, 1987), oscillations of the parent droplet are
modeled in the framework of a spring mass system and breakup occurs when the oscillations
exceed a critical value. In the wave model, new droplets are formed based on the growth rate of
the fastest wave instability on the surface of the parent blob (Reitz, 1987). Both models are de-
terministic with "single-scale! production of new droplets. In many combustion applications,
however, injection of liquid jet takes place at high relative velocity between the two phases (high
initial Weber number). Under these conditions, intriguing processes such as turbulence-induced
breakup (Chigier and Reitz, 1996), multiple droplet collision in the dense spray region (Georjion
and Reitz, 1999), fluctuations due to cavitating flow inside the injector (Lefebvre, 1989), etc.,
contribute to the process of atomization. At each spray location, this may result in droplet for-
mation over a large spectrum of droplet-sizes and is not captured by the above models. In order to
improve the TAB model, Tanner (1998) used an enhanced TAB model (ETAB), where the
product droplet size was obtained via a breakup cascade modeled by an exponential law. The
parameters of this distribution function were derived from experimental data to achieve better
performance of the model.

To predict the essential global features of these complex phenomena, a stochastic approach for
droplet breakup taking into account a range of product-droplet sizes is imperative (Gorokhovski,
2001). In the present work, we develop such an approach coupled with large-eddy simulation
(LES) of the gas-phase. Specifically, at a given control volume, the characteristic radius of
droplets is assumed to be a time-dependent stochastic variable with a given initial distribution
function. The breakup of parent blobs into secondary droplets is viewed as the temporal evolution
of this distribution function. The size of new droplets can be sampled from the distribution
function evaluated at a typical breakup time scale of the parent drop. Owing to the complexity of
the phenomenon, it is difficult to clearly identify a dominant mechanism for breakup and the
corresponding behavior of the distribution function. On the other hand, for a series of uncor-
related breakup events, Kolmogorov (1941) developed a stochastic theory where the breakup of
solid particles is modeled by a discrete random process. The probability to break each parent
particle into a certain number of parts is assumed independent of the parent-particle size. Using
central limit theorem, Kolmogorov pointed out that such a general assumption leads to a log-
normal distribution of particle size in the long-time limit. Further theoretical developments of
Kolmogorov!s stochastic theory can be found in Gorokhovski and Saveliev (2003).
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In this work, we develop a numerical scheme for atomization of liquid spray at large Weber
number based on Kolmogorov!s hypothesis. The discrete model by Kolmogorov is reformulated in
terms of a Fokker–Planck (FP) differential equation for the evolution of the size-distribution
function from a parent-blob towards the log-normal law. The secondary droplets are sampled from
its analytical solution corresponding to the breakup time scale. The parameters encountered in the
FP equation are computed dynamically by relating them to the local Weber number. The capillary
force prescribes a lower bound for the produced-droplet size through the local maximum stable (or
critical) radius. The velocity of the produced droplets is modeled usingMonte Carlo procedure and
Lagrangian tracking in the physical space is continued till further breakup events. The evolution of
droplet diameter is basically governed by the local scale of relative-velocity fluctuations between
the gas and liquid phases. In this respect, LES plays a key role in providing accurate, local estimates
of the gas-phase turbulent quantities (Moin and Kim, 1987). Although the mesh spacing used in a
typical LES computation is larger than droplet size, the superiority of LES over RANS lies in
accurate predictions of mixing and momentum transport from the gas phase to the spray field.

Furthermore, the standard approach of representing a group of like-droplets called "parcels!
(computational particles) is inappropriate in the context of LES. Computational parcels provide
averaged particle properties as opposed to instantaneous ones required in LES. Theoretically, all
droplet trajectories should be computed to accurately represent the coupling between the gas and
liquid phases. This, however, leads to unacceptably large number of computational particles
within a short period of time, making it impossible to simulate even with advanced parallel
computing techniques. A novel hybrid-approach involving co-existence of individual droplets and
parcels (computational particle) is developed. Tracking of parcels and droplets is shown to be an
efficient way of performing spray simulations. The superiority of the hybrid-approach along with
the present stochastic model in predicting atomization and spray-evolution is demonstrated by
comparing the instantaneous snapshots of spray with those obtained by standard parcels-
approach. Finally, the importance of the present model for the computation of high-speed
air-blast atomization encountered in gas-turbine combustion chambers is demonstrated by
computing the breakup of round water jet in a turbulent channel flow. The spatial distribution of
droplets indicating a turbulent, flapping spray with large unbroken drops in the near-injector
region and temporal evolution of bursting droplets in the far-field is demonstrated. The inter-
action between turbulence and atomization is explored by computing one-point correlations
between the gas-phase streamwise velocity component and droplet size.

In subsequent sections, Kolmogorov!s stochastic theory of solid particle breakup is summa-
rized. The discrete breakup model is applied to atomization by constructing a Fokker–Planck
equation and obtaining the long-time analytical solutions. Next, a numerical algorithm imple-
menting the present model into a Eulerian–Lagrangian solver along with the hybrid-technique for
spray computations is described. Results obtained from a series of numerical simulations in
idealized diesel and gas-turbine configurations are presented.

2. Fokker–Planck equation for particle-breakup

Let NtotðtÞ and Nðr; tÞ represent the total number of breaking particles and particles with size
q6 r, respectively, at discrete time instants t ¼ 0; 1; 2; . . . These time moments are scaled by the
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breakup frequency, m, such that (mtbu ¼ 1), where tbu is the time at which breakup occurs. Their
corresponding expectations are given as N totðtÞ and Nðr; tÞ, respectively. Consider breakup of a
given particle with size r within the time interval ½t; t þ 1&. Let QðaÞ be the mean number of sec-
ondary particles produced with size q6 ar, with 06 a6 1. According to Kolmogorov!s hypoth-
esis, the probability to break each parent particle into a given number of fragments is independent
of the parent particle size. In other words, QðaÞ does not depend on the history of breakup and is
not influenced by other parent particles. It then follows that

Nðr; t þ 1Þ ¼
Z 1

0

Nðr=a; tÞdQðaÞ ð1Þ

Introducing x ¼ lnðrÞ, Kolmogorov pointed out that

T ðx; tÞ ¼ Nðex; tÞ
N totðtÞ

¼ Nðex; tÞ
NtotðtÞ

ð2Þ

Further, denoting n ¼ lnðaÞ and QðaÞ ¼ Qð1Þ ' SðnÞ, Eq. (1) can be rewritten as

T ðx; t þ 1Þ ¼
Z 0

(1
T ðx( n; tÞdSðnÞ ð3Þ

By central limit theorem, Kolmogorov noted that from discrete model (Eq. (3)), the long-time
limit form of T ðx; tÞ approaches an error function (Eq. (12) from Kolmogorov, 1941). This implies
that the number of droplets Nðr; tÞ is asymptotically governed by the log-normal density distri-
bution of particle size. The entire spectrum, QðaÞ, is unknown. However, in the limit of large time
Eq. (3) can be represented by Fokker–Planck differential equation where only the first two mo-
ments of QðaÞ are considered important. Using parabolic scaling of variables, s ¼ b2t, y ¼ bx,
where b is a scaling parameter (b ! 0 as t ! 1) and t is scaled by the breakup frequency m, Eq.
(3) can be written as

T ðy; sþ b2Þ ¼
Z 0

(1
T ðy ( bn; sÞSðnÞdn ð4Þ

Expanding both the left-hand side and the expression under integral in Eq. (4), with the as-
sumption that

R 0

(1 n3SðnÞdn is limited such that 1
6
b o3T

ox3
R 0

(1 n3SðnÞdn becomes negligible if b ! 0,
one obtains the Fokker–Planck approximation:

oT ðx; tÞ
ot

¼ (mhni oT ðx; tÞ
ox

þ 1

2
mhn2i o

2T ðx; tÞ
ox2

ð5Þ

where hni ¼
R 0

(1 nSðnÞdn and hn2i ¼
R 0

(1 n2SðnÞdn are the first two moments of n. Eq. (5) can be
rewritten for the probability density distribution, UðxÞ by substituting T ðx; tÞ ¼

R x
(1 Uðx; tÞdx,

oUðx; tÞ
ot

þ mhni oUðx; tÞ
ox

¼ 1

2
mhn2i o

2Uðx; tÞ
ox2

ð6Þ

The number distribution of radius, f ðr; tÞ, normalized on the total number of particles
R1
0 f ðr; tÞdr ¼ 1, can be expressed according to the rule, jf ðrÞdrj ¼ jUðxÞdxj. This gives
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UðxÞ ¼ exf ðexÞ; f ðrÞ ¼ 1

r
Uðln rÞ ð7Þ

Using Eq. (7), the Fokker–Planck equation for the distribution f ðr; tÞ is
of ðr; tÞ

ot
¼ oSðr; tÞ

or
ð8Þ

where Sðr; tÞ is the flux density in the space of length scales given by the following expression:

Sðr; tÞ ¼ (mhnirf ðr; tÞ þ 1

2
mhn2ir o

or
ðrf ðr; tÞÞ ð9Þ

The solution of Eq. (6) is a Gaussian function given by

Uðx; tÞ ¼
Z 0

(1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2phn2imt
q exp

(ðx( x0Þ2

2hn2imt

" #

U0ðx0 ( hnimtÞdx0 ð10Þ

where U0ðx0Þ is the initial distribution of the logarithm of droplet radius and x0 is logarithm of
radius of the parent drop. Accounting for Eq. (7), this solution can be rewritten for the nor-
malized distribution of radius, f ðr; tÞ:

f ðr; tÞ ¼ 1

r

Z 1

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2phn2imt
q exp

(ðlogðr0=rÞ þ hnimtÞ2

2hn2imt

" #

f0ðr0Þdr0 ð11Þ

where f0ðr0Þ is the initial distribution of droplet radius before breakup.

3. Implementation of stochastic breakup model into unstructured LES code

In the present LES computations, an Eulerian–Lagrangian code based on low Mach number
equations is used (Mahesh et al., submitted). This code is capable of handling complex geometries
with unstructured and arbitrary shaped elements and is primarily developed for hi-fidelity compu-
tations of turbulent flows in realistic combustors. This algorithm has been validated for multiphase
flows in a variety of configurations including turbulent flows through channel, swirling coaxial
combustor, and realistic industrial combustion chamber (Mahesh et al., 2001; Apte et al., 2003).

The influence of the high number density of droplets on the gas-phase flow are modeled
through two-way coupling between the gas and liquid phase. The standard particle-in-cell
methodology is employed where the effect of particles within a control volume is represented at its
centroid. The Lagrangian equations governing the particle motions are

dxp

dt
¼ up ð12Þ

dup
dt

¼ f
Stp

ðu( upÞ ð13Þ

where xp, up, u are the droplet position, velocity, and gas-phase velocity vectors, respectively. f is
the drag coefficient and Stp, the particle Stokes number defined as
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Stp ¼
1

18
qpd

2
pReref ð14Þ

where Reref ¼ qrefUrefLref=lref is based on the reference length and velocity scales used to normalize
the governing equations. The drag coefficient f has several expressions as a function of particle
Reynolds number, Rep ¼ dpReref ju( upj. For particle Reynolds number up to 800, Schiller and
Naumann (see Crowe et al., 1998) proposed a nonlinear correlation:

f ¼ ð1þ aRebpÞ ð15Þ

This yields a drag coefficient with less than 5% deviation from the standard drag curve for
a ¼ 0:15, b ¼ 0:687. The gas-phase velocity, u, in Eqs. (12) and (13) are computed at individual
particle locations within a control volume using a generalized, tri-linear interpolation scheme for
arbitrary shaped elements. More details of this formulation are given in Apte et al. (2003).

The present paper focuses on the details of the secondary atomization model and efficient
computation of spray breakup. First, the implementation of the stochastic breakup model into the
unstructured LES code is described in detail. Later, the hybrid-algorithm and its implementation
are explained.

3.1. Procedure for computation of breakup

The liquid-sheet injected into the computational domain is represented by large "blobs! with
characteristic size equal to the injector nozzle radius and a given velocity. These large drops are
tracked with two-way coupling between the gas and liquid phases. The breakup model then
predicts the time at which these blobs would break as well as the number and properties of the
formed droplets based on a Monte Carlo procedure. Specifically, the product droplet velocity and
the local magnitude of the critical (or maximum stable) radius, rcr, are obtained. Newly formed
droplets replace the present one in the statistical representation of spray.

Consider motion of a jth primary drop that undergoes breakup (rj > rcr). As new drops/blobs
are formed/introduced into the domain, the size-distribution function associated with them is a
Dirac-delta function. Initially, their age, t, is presumed to be zero and increases as they evolve
along with the flowfield. With tP tbu ) 1=m and Wej > Wecr, new droplets are created based on the
droplet-radius distribution function, which evolves according to Eq. (10). The number and size of
these droplets is determined based on the stochastic sampling procedure and by conserving mass
of the parent drop. The parent drops/blobs are destroyed and Lagrangian tracking of newly
formed droplets is continued till the next breakup event (mt ¼ 1; rj > rcr). In the present compu-
tations, we used expressions obtained for the distribution of the logarithm of radius. The initial
distribution for the logarithm of radius of the jth primary drop can be represented as

U0jðx0Þ ¼ dðx0 ( xjÞ ð16Þ

Using the distribution function from Eq. (10), the solution can be expressed as

Tjðx; t þ 1Þ ¼
Z x

(1
Ujðx; tÞdx ¼

1

2
1

2

6

4
þ erf

x( xj ( hni
ffiffiffiffiffiffiffiffiffiffiffi

2hn2i
q

0

B

@

1

C

A

3

7

5
ð17Þ
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The product droplet velocity is computed by adding a factor wbu to the primary drop velocity.
This additional velocity is randomly distributed in a plane normal to the relative velocity vector
between the gas-phase and parent drop, and the magnitude is determined by the radius of the
parent drop and the breakup frequency, m:

jwbuj ¼ rm ð18Þ

This modification of newly formed droplets follows the physical picture of parent droplets being
torn apart by aerodynamic forces giving momentum to the newly formed droplets in the direction
normal to the relative velocity between the gas-phase and parent drops (O!Rourke and Amsden,
1987).

3.2. Critical radius and breakup frequency

The critical (or maximum stable) radius for breakup is obtained by a balance between the
disruptive hydrodynamic and capillary forces:

rcr ¼
Wecrr
qgu2r;j

ð19Þ

where jur;jj is the relative velocity between the gas and droplet, r the surface tension coefficient,
Wecr the critical Weber number, which is assumed to be of the order of six over a wide range of
Ohnesorge numbers (Gel!fand et al., 1975; Pilch and Erdman, 1987). For highly turbulent flows,
however, the instantaneous value of Kolmogorov!s scale, g, is often less than the droplet size and
the entire spectrum of turbulent kinetic energy can contribute to the stretching and disintegration
of the droplet. In this case, the critical radius should be obtained as a balance between the cap-
illary forces and turbulent kinetic energy supplied to the liquid droplet. Kolmogorov (1949) de-
fined a critical droplet radius through an equivalent relative velocity based on his theory of local
statistical properties in high Reynolds number,

u2r;j ¼
mlam
g

" #2 d
g

" #2=3

ð20Þ

where d is the droplet diameter. Similar expression was used by Martinez-Bazan et al. (1999) to
obtain frequency of bubble breakup in turbulent flows. Eq. (20), however, does not account for
the liquid density, while inertia effects play an important role in droplet stretching. Accordingly,
this expression can be further modified by estimating the r.m.s. of relative droplet-to-gas velocity
from the mean viscous dissipation and Stokes time scale (Kuznezov and Sabel!nikov, 1990):

hu2r;ji * !sst ð21Þ

Using Eqs. (19) and (21), one obtains

rcr ¼
9

2

Wecrrmlam
!ql

" #1=3

ð22Þ

This expression, however, requires a reliable knowledge of viscous dissipation rate and can be
easily obtained dynamically from the resolved scale energy flux in a LES computation. The
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breakup frequency is obtained following the analogy with expressions used for aerodynamic
breakup and utilizing the relative velocity, jur;jj, given by Eq. (21)

tbu ¼ B
ffiffiffiffi

ql

p

qg

rj
jur;jj

ð23Þ

where rj is the radius of parent drop and B ¼
ffiffiffiffiffiffiffiffi

1=3
p

(O!Rourke, 1981; Faeth et al., 1995).

3.3. Choice of parameters hni and hn2i

Multiplying Eq. (9) by r and integrating over the entire range gives an expression for the first
moment

hri ¼ hrit¼0 exp½mðhniþ 0:5hn2iÞt& ð24Þ

Further more, the expression

hniþ 1

2
hn2i < 0 ð25Þ

is a necessary condition to obtain disintegration of parent droplets, hri
hrit¼0

< 0. Providing values of
hni and hn2i is a crucial and difficult problem similar to closure of turbulence models. Our ob-
jective is to relate these terms to the characteristic flow parameters in order to obtain their values
dynamically. It should be noted that in the long time limit, when all droplets are broken, the flux
density in the space of radius Sðr; t ! 1Þ can be set to zero to provide a steady state distribution
of broken droplets. Equating Eq. (9) to zero, one obtains the power law distribution

f ðr; tÞjt!1 + 1

r

" #ð1(2hni=hn2iÞ

ð26Þ

A power distribution is endowed with self-similarity of fractal property of irregular shapes. The
fractal structure of atomizing spray was observed by Shavit and Chigier (1995) and Zhou and Yu
(2000). This implies that in the intermediate range of scales between the parent fluid element (large
Weber number) and the maximum stable droplet (critical Weber number) there exists no preferred
length scale. This closely resembles the inertial range of the energy cascade process in homoge-
neous turbulence at high Reynolds numbers. Analogously, assuming u3r;j=rj + u3r;cr=rcr, one obtains

rcr
rj

+ Wecr
Wej

" #3=5

) hlog ai ) hni ¼ K1 log
Wecr
Wej

" #

ð27Þ

where ur;cr is the relative velocity at which disruptive forces are balanced by capillary forces
(similar to turbulent velocity scale of the smallest eddies).

From Einstein!s theory of Brownian motion, the diffusion coefficient in the Fokker–Planck
equation is known to be the energy of Brownian particles multiplied by their mobility. In the
present theory, the drift velocity is presented in the form of drag force times the mobility. The
ratio of diffusion to drift velocity is given by the ratio of energy to drag force. In the breakup
process, we associate the energy in Einstein!s theory with the disruptive energy while the force to
the capillary force on the droplet. Their ratio is represented by the maximum stable droplet radius,
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rcr. Considering the Fokker–Planck equation (Eq. (8)), the diffusion to drift velocity ratio is scaled
by (hn2i=hni. Then it is assumed that

( hni
hn2i

) ( hlog ai
hlog2 ai

¼ K2 log
rj
rcr

" #

ð28Þ

were K1 and K2 are model constantants of order unity. The parameters in the Fokker–Planck
equation are obtained dynamically by using Eqs. (27) and (28).

4. Hybrid droplet-parcel algorithm for spray computations

Performing spray breakup computations using Lagrangian tracking of each individual droplet
gives rise to a large number of droplets (of the order 50 million) very close to the injector. In
parallel computation of complex flows utilizing standard domain-decomposition techniques, the
load balancing per processor is achieved by equally distributing the number of grid cells among all
processors. Lagrangian particle-tracking causes load-imbalance owing to the varying number of
droplets per processor. Dynamic-load balancing and redistribution of the load as the spray
evolves is necessary to resolve the load imbalance caused by spray computations. This, however, is
difficult to implement in an unstructured code utilizing arbitrary domain decomposition and is an
important area of applied mathematics research.

In order to overcome the load-imbalance issue, usually a group of droplets with similar
characteristics (diameter, velocity, temperature, etc.) is represented by a computational particle or
"parcel! to decrease the total number of Lagrangian particles tracked in a simulation. Each parcel
carries the number of droplets per parcel as a parameter. With breakup, the diameter of the parcel
is sampled according to the procedure given above and the number of droplets associated with the
particles is changed in order to conserve mass. No additional computational particles are created
owing to breakup. This reduces the total number of particles per processor and the computational
overhead with sprays is only around 20–30% depending on the number of parcels used. Each
parcel has all the droplet characteristics associated with it. The parcels-methodology works well
for RANS-type simulations where one is interested in time- or ensemble-averaged quantities. For
deterministic breakup models such as the wave and TAB models, same size droplets are created
after breakup and grouping of droplets using parcels approach seems reasonable. In the present
stochastic model, breakup occurs over a wide range of droplet sizes and the parcels-approach is
not appropriate as shown later.

A hybrid scheme involving the computation of both individual droplets and parcels is proposed.
The difference between droplets and parcels is simply the number of particles associated with them
Npar, which is unity for droplets. During injection, new particles introduced in the computational
domain are pure drops (Npar ¼ 1). These drops move downstream and undergo breakup according
to the procedure given in Section 2 and produce new droplets thus increasing the number of
computational particles in the domain. In the dense-spray regime, one may obtain large number of
droplets in a control volume and its immediate neighbors. The basic idea in the hybrid-approach is
to group these droplets into bins corresponding to their size and other properties such as velocity,
temperature etc. The droplets in bins are then collected to form a parcel by conserving mass,
momentum and energy. The location of the parcel is obtained by mass-weighted averaging from
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individual drops in the bin. The parcel thus created then undergoes breakup according to the
above stochastic sub-grid model, however, does not create new parcels. On the other hand, the
number of particles associated with the parcel is increased and the diameter is decreased by mass-
conservation.

The collection and grouping of droplets belonging to same control volume can be achieved
easily by defining pointer arrays as shown in Fig. 1. First, the number of droplets (it should be
noted here that only droplets are considered in this grouping and parcels within the control
volume are excluded) present in all control volumes (Ncv) on a processor is counted. Creation of
parcels from the individual droplets proceeds if the total number of droplets per cell exceeds a
prescribed threshold. This criterion helps in restraining the total number of computational par-
ticles per processor from growing to unreasonable values. A CV list is then formed which points
to the beginning of an array consisting of group of particles termed as droplet-index. The droplet-
identifier points to the serial number of each droplet. The total number of droplets in each group
of droplet-identifier is obtained from the CV list. This grouping methodology is fast and is
achieved by looping twice over the number of control volumes and once over the total number of
particles per processor. With this re-grouping technique, the total number of droplets in each cell
is readily available. The list of particle numbers in a particular control volume can be accessed by
using the droplet serial number and droplet-identifier arrays.

Finally, only those cells (for example, CV¼ 1 as shown in Fig. 1) are considered for which the
number of droplets (DI1) exceeds a predetermined threshold. These droplets are now distributed
into bins. PDFs and droplet number densities are constructed based on the droplet diameter,
velocity, and other properties. In the present work the temperature of all droplets is same as the
gas-phase and evaporation is negligible. It was observed that droplets distributed into bins based
only on their size gave similar results as compared to a two-dimensional sorting based on diameter
and realtive velocity. In Fig. 1 five droplet size classes are considered with the minimum and
maximum diameters equal to those obtained in CV¼ 1. The individual droplets are now destroyed

Fig. 1. The hybrid particle/parcel algorithm.
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and new parcels are created. It should be noted that, the diameter of the parcels is obtained from
the mass-averaging of the individual droplet sizes in a bin. This is different compared to modeling
the effect of coalescence. The result of coalescence is one droplet of larger size while the parcel
formed represents mass-averaged size of the droplets in the bin. Improvements and standard-
ization of the above methodology can be achieved by monitoring the number density per control
volume. In addition, advanced droplet coalescence and collision models (Schmidt and Rutland,
2000) can be easily implemented in this framework.

The effectiveness of this hybrid approach is demonstrated in the following computations. The
implementation of this method in an unstructured LES code gives us the capability of testing and
validating these models in realistic industrial geometries for various combustors with multiphase
flows.

5. Spray evolution in diesel-engine configuration

In order to validate the stochastic breakup model together with the hybrid algorithm proposed
herein, a standard test case for spray atomization in a diesel-engine configuration is simulated and
compared with the experimental data of Hiroyasu and Kadota (1974). The computational domain
is a closed cylinder of length 13.8 cm and diameter 5.6 cm. Liquid jet is injected through a single-
hole nozzle into this constant pressure, room-temperature nitrogen chamber. Since the chamber
temperature is low, evaporation of the liquid fuel is negligible. Large blobs of diameter 300 lm
corresponding to the nozzle size are injected into the combustion chamber. Initially, there is no
gas-phase flow inside the chamber. Gas-phase recirculation zones are created through momentum
transfer from the liquid jet to the gas-phase. Three cases with different chamber pressures of 1.1, 3,
and 5 MPa are simulated in order to validate with the experimental data. The corresponding flow
parameters are indicated in Table 1. The mass flow rate of the liquid is obtained from the injection
velocity, nozzle diameter and the time of injection. The number of droplets injected per iteration is
determined based on the droplet diameter and time step by keeping the mass flow rate constant.
The time step used in the present simulation is 15 ls and a uniform grid of 100· 65· 65 cells is
found to capture the spray dynamics accurately.

Fig. 2 shows the time evolution of the distribution of droplets in the combustion chamber. The
region close to the injector mostly consists of large-unbroken drops along with small, stripped
droplets. The ligament-like liquid structures deflected outward are clearly visible. Hiroyasu and
Kadota (1974) provided an experimental correlation to estimate the intact liquid core length,

Table 1
Validation cases for stochastic breakup model in diesel-engine configuration (Hiroyasu and Kadota, 1974)

Parameters Case 1 Case 2 Case 3

Pliq, MPa 10 10 10
Pgas, MPa 1.1 3.0 5.0
Injection diameter, lm 300 300 300
Injection time, ms 2.5 4.0 5.0
Injection velocity, m/s 102 90.3 86.4
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L ¼ 0:5Ad0
ffiffiffiffiffiffiffiffiffiffiffi

ql=qg

q

, where d0 is the nozzle diameter (300 lm in the present case). Values of A of 14

and 25 yield the minimum and maximum measured lengths, respectively. For the case with
chamber pressure of 1.1 MPa, these lengths are 1.5 and 3 cm, respectively. Based on the time
evolution of the spray in the present simulations, the minimum intact core length (the maximum
distance from nozzle where large unbroken drops are observed) is around 1.2 cm. It should be
noted that, initially the gas-phase in the chamber is at rest. With injection of droplets from the
nozzle, recirculation zones are created through momentum exchange between the liquid and gas-
phase. The relative velocities experienced by the first injected large drops are thus higher and
breakup is initiated earlier. With time, however, large unbroken drops were observed till 2.5 cm
from the nozzle. Reitz (1987) defines the (partial) core length of spray as

Ld0=2 ¼ maxðljjdj < d0=2Þ ð29Þ

where dj and d0 are the drop and nozzle diameters, respectively and lj is the distance from the
nozzle exit to the location of jth droplet. Here the maximum is taken over all droplets close to the
inejector. Accordingly, Ld0=2 is 2.5 cm in the present computation which is close to the values
reported by Reitz (1987) and Tanner (1998).

Fig. 3 shows the comparison of the spray-tip penetration depth as a function of time with the
experimental data for the three cases investigated. Good agreement is obtained for all the three
cases with the model parameters obtained dynamically from the local flow conditions. The
penetration depth decreases with increase in pressure as seen from Fig. 3. This is attributed to the
decreased injection velocity as well as strong damping of the liquid momentum by the denser gas-
phase at higher pressures. Fig. 4 shows the probability density function of mass distribution in the

Fig. 2. Time evolution of spray in a nitrogen-filled closed cylindrical chamber at 1.1 MPa using the hybrid approach.
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droplet diameter space near the injector and at x ¼ 65 mm, respectively using the present sto-
chastic model and the wave model (Reitz, 1987). The evolution of the initial delta-function into a
broad-band distribution is clearly observed. It should be noted that the wave model does not
predict small size droplets at this location as compared to the stochastic model. The stripping of
small droplets is captured by the present model. In subsequent publications, a detailed compar-
ison of all the models using the present hybrid approach should be performed in order to evaluate
their performance.

Fig. 3. Comparison of spray-tip penetration depth with experimental data at different chamber pressures.

Fig. 4. Comparison of PDF of mass distribution for different droplet diameters with Reitz (1987) model, P ¼ 1:1 MPa.
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The spray angles produced for the three chamber pressures, 20", 23", and 25", respectively, are
in close agreement with the experimental observations as shown in Fig. 5. These angles are ob-
tained for the present hybrid approach at the end of the simulation. The spray angle is determined
by drawing a tangent to the radial spread of the spray starting from the end of the jet breakup.
Computation of spray angle assures inclusion of 99% of the liquid mass in the whole domain. The
agreement of the spray angle is also important to assess the accuracy of the breakup model, as it
directly depends on the droplet-sizes produced and their momentum. Droplets with smaller size
and thus smaller Stokes number have small relaxation time and follow the gas-phase flow. On the
other hand, large droplets with higher inertia can move considerably farther against the sur-
rounding gas-phase flow. Droplet size distributions predicted by the model should be such that the
global spray angle is captured accurately.

Fig. 6 shows the evolution of the sauter mean diameter (SMD) for P ¼ 1:1 MPa using the
present model with hybrid approach and various other models usually used in commercial codes.
Close to the injector, the SMD is around 300 lm corresponding to the size of the injected droplets.
It decreases rapidly over a very short distance near the injector indicating atomization of parent
blobs and remains more or less constant further downstream. At x ¼ 65 cm, the experimental
value from Hiroyasu and Kadota (1974) is also indicated. Only one point from the experiment is
shown as the variation in SMD farther away from the nozzle is low. The under prediction of SMD
away from the injector is expected because of lack of any coalescence model in the present sim-
ulation. Results from all other models shown make use of a coalescence model to obtain good
agreement with the experimental data away from the injector. As seen from Fig. 6 different models
predict different size distributions in the near-field and yet give the same results in the far-field.
The SMD first decreases close to the injector and then increases when the coalescence dominates
breakup. In the present simulations, we have purposefully neglected coalescence in order to in-
dicate that the stochastic breakup model can predict the experimentally observed mist of small
droplets stripped from the liquid core close to the injector. On the other hand, the present model

Fig. 5. Comparison of spray angles for different chamber pressures with the experimental data.
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does not predict excessive breakup as the liquid core lengths obtained from time evolution of the
spray agree well with the experiments. A more detailed comparison of all the models with and
without coalescence and using the present hybrid approach should be conducted to clearly
identify the differences among them. This is not the scope of this work and will be conducted in
the future.

Comparing the near-injector behavior of various models, Reitz and Diwakar (1987) show
gradual decrease in SMD showing large size droplets beyond 2 cm. This model, however, does not
show existence of small droplets close to the injector. Reitz (1987) improved this model to obtain
small droplets close to the injector. These finely atomized drops decrease the spray surface area
dramatically giving much smaller values of SMD. The TAB model by O!Rourke and Amsden
(1987) also shows similar behavior near the injector. A liquid core of any significant length cannot
be obtained by injecting large drops in the TAB model as these drops are highly unstable and
burst into very small product droplets during first few computational time steps. The ETAB
model by Tanner (1998) improves this by utilizing an exponential decay law to determine the
product droplet sizes. This gives a significant core length as the SMD is more or less constant till
2 cm, however, does not show mist of stripped droplets close to the injector. In the present model,
however, the size of newly formed droplets is obtained from a more general stochastic theory. This
model thus shows SMD distributions near the nozzle in between that predicted by the TAB/wave
and the ETAB models.

In order to assess the effectiveness of the hybrid-approach, the computations were performed
using three different methods: tracking and creation of all droplets, tracking of parcels, and the
hybrid droplet-parcel algorithm. Results are qualitatively compared to elucidate the differences
among them. Fig. 7(a)–(c) shows the close-up views of spray near and further away from the
nozzle at a certain time for the three different computational methods used, viz., pure droplets,
pure parcels, and hybrid approach, respectively. The size of each circle plotted scales with the
actual droplet diameters represented by the computational particle. Fig. 7(a) indicates presence

Fig. 6. Variation of sauter mean diameter (SMD) in the axial direction, P ¼ 1:1 MPa.
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of a broad spectrum of droplet sizes with co-existence of large and small droplets as well as
stripping breakup from the liquid core. This indicates the differences among the present sto-
chastic breakup model and other the conventional deterministic models such as TAB (O!Rourke
and Amsden, 1987) and Reitz (1987). It should be noted that, all droplet trajectories are
computed giving large number of droplets (+500,000) even at an early stage of the simulation
(t ¼ 0:28 ms). This simulation, however, depicts the complex interactions between the liquid
and gas-phases, the momentum coupling, and spray atomization due to stripping of small
droplets.

Fig. 7(b) shows a similar simulation performed by using parcels-approach. An extremely coarse
(global) representation of the liquid core and atomization is obtained because new droplets are
not created. The total number of parcels injected into the domain at this stage is around 300. Fig.
7(c), on the other hand, indicates the effectiveness of the present hybrid approach. Here, the total
number of computational particles (+6000) is much smaller than that shown in Fig. 7(a). Close to
the nozzle, the liquid core shows existence of large and small droplets. Away from the nozzle, a
global representation of droplets grouped to form parcels as well as small sparse droplets is
observed. The computational overload due to the hybrid approach is significantly less (+50 times
lower) in comparison with the computation of all droplet trajectories. On the other hand, the
essential features of the spray dynamics are captured by the hybrid approach indicating its
effectiveness and applicability in Eulerian–Lagrangian formulations.

Fig. 8 shows instantaneous spray field computed using the hybrid approach. Here the size of the
circles scale with the total number of droplets represented by each computational particle. This
clearly shows that, close to the injector each particle represents single blob injected (small circle
size). After the liquid core length, the particles break and new computational particles are created.
Based on the hybrid algorithm, these particles are grouped into bins and collected to form parcels
(indicated by bigger size circles). The total number of trajectories computed can be easily limited

Fig. 7. Instantaneous snapshot of spray evolution using different computational approaches: (a) tracking all droplet
trajectories, (b) parcels approach, (c) present hybrid approach. Size of the circles scales with the diameter of the droplets
represented by the computational particle.
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by changing the threshold value of particles allowed in each computational cell and the total
number of bins used to form the parcels.

6. Computation of air-blast atomization

Air-blast atomization of liquid jet in a strong, turbulent cross flow depicting conditions in a
gas-turbine combustion chamber was also simulated using the hybrid-approach. First, a periodic,
turbulent channel flow was computed using the unstructured LES code. The bulk mean velocity
(Uc) normalized by the wall-shear velocity (us ¼ 1 m/s) is approximately 15.63, which gives the
Reynolds number based on the bulk mean velocity and full channel width as 5600. The gas-phase
results for mean and r.m.s. values of the three velocity components show excellent agreement with
the experiments as well as other DNS data and is reported by Mahesh et al. (2001). The coarse
grid 32· 64· 32 used in this simulation was able to give good results for the gas-phase turbulent
quantities. Liquid jet is injected through the lower wall at z ¼ 0 plane in the vertical direction with
velocity 1/10th of the mean axial gas-phase velocity at the centerline of the channel (+18 m/s). The
water jet is simulated by introducing 1 mm diameter blobs.

Fig. 9 shows the time evolution of gas-phase axial velocity contours in the z ¼ 0 plane. In-
stantaneous snapshots of liquid spray are superimposed on the contour plots. The size of the
circles is proportional to the droplet diameter. Axial velocity contours in a channel flow without
liquid injection is also shown for comparison. It is seen that large-scale eddies transmit kinetic
energy to the liquid jet, causing stretching, flapping, and breakup. A highly unsteady, "pulsating!
formation of droplets with broad size-spectrum is observed. The coupling between the gas-phase
turbulent fluctuations and atomization is explored by computing one-point correlation between
gas-phase streamwise velocity and droplet diameter as shown in Fig. 10. Strong correlation is
observed in the core region of the liquid jet. The damping of turbulent fluctuations by the dense
spray is evident from the contour plots shown in Fig. 9. This computation demonstrates the
potential of the present stochastic breakup model along with the hybrid particle–parcel algorithm
in simulating complex atomization process and spray dynamics. A systematic evaluation of these

Fig. 8. Instantaneous snapshot of spray evolution using hybrid approach for P ¼ 1:1 MPa. Size of the circles scales
with the number of droplets represented by the computational particle: (a) full view, (b,c) close-up views.
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modeling concepts in complex geometries can be done owing to considerable gain in computa-
tional time due to the hybrid approach.

7. Conclusion

A stochastic model for secondary breakup involving Lagrangian tracking of droplets with LES
of the gas-phase flowfield was developed. Atomization was considered in the framework of cas-

Fig. 9. Contours of axial velocity superimposed with instantaneous locations of the computational particles at z ¼ 0.
Droplets are injected from the bottom plane at x ¼ 0:01 m.

Fig. 10. One-point correlation between gas-phase velocity and droplet diameter normalized by reference velocity
(U ¼ 1 m/s) and channel width (D ¼ 2 m).
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cade of uncorrelated breakup events providing droplet diameter distribution with the critical
stable diameter independent of the initial size. Kolmogorov!s discrete model of particle breakup
was represented by its Fokker–Planck approximation governing the production of new droplets.
The parameters of the model were computed dynamically based on the local Weber number. The
role of LES is to provide accurate predictions of turbulent transport used in estimating the
maximum stable diameter of droplets before breakup. A novel hybrid-approach capable of
simulating droplets as well as parcels was developed in the present work. This approach was
shown to be highly efficient and more accurate compared to the standard parcels-approach
usually employed in spray computations. The hybrid algorithm is particularly attractive in
complex configurations with the presence of large number of droplets close to the injector. The
present model was validated against available experimental data by Hiroyasu and Kadota (1974)
and compared with other standard breakup models. A breakup simulation in the presence of
turbulent cross flow was also performed to qualitatively demonstrate the effectiveness of the
present model in air blast atomization.
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