

Structure types

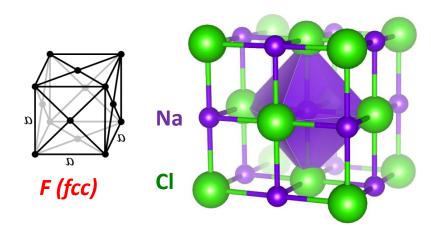
Please see Lecture 3 for definitions of close-packing and interstitial sites

Solid State Chemistry CHEM-E4155, Antti Karttunen, Aalto University, 2019

Structure types in this document

Name	Crystal system	Space group
NaCl (rocksalt)	Cubic	Fm-3m
ZnS (zinc blende)	Cubic	F-43m
CaF ₂ (fluorite)	Cubic	Fm-3m
Na ₂ O (antifluorite)	Cubic	Fm-3m
CsCl	Cubic	Pm-3m
ZnS (wurtzite)	Hexagonal	Р6 ₃ тс
NiAs	Hexagonal	Р6 ₃ тс
Cdl ₂	Trigonal	P-3m
Al ₂ O ₃ (corundum)	Trigonal	R-3c
TiO ₂ (rutile)	Tetragonal	P4 ₂ /mnm
CaTiO ₃ (perovskite)	Cubic	Pm-3m
MgAl ₂ O ₄ (spinel)	Cubic	Fd-3m
Inverse spinel	Cubic	Fd-3m

Interstitial sites in close-packed lattices


Table 1.4	Some close	packed structures
-----------	------------	-------------------

		Interstitial sites		
Anion arrangement	T ₊	T_	Ο	Examples
ccp	1 1/8	- 1/8	1 - 1/2 1/2	NaCl, rock salt ZnS, blende or sphalerite MgAl ₂ O ₄ , spinel CdCl ₂
	- 1	- 1	1/3	$CrCl_3$ K_2O , antifluorite
hcp	- 1 -	- - -	1 - 1/2	NiAs ZnS, wurtzite Cdl ₂
	- - 1/8	- - 1/8	1/2 2/3 1/2	TiO ₂ , rutile ^a Al ₂ O ₃ , corundum Mg ₂ SiO ₄ , olivine
ccp 'BaO ₃ ' layers	_	-	1/4	BaTiO ₃ , perovskite

^aThe *hcp* oxide layers in rutile are not planar but are buckled; the oxide arrangement may alternatively be described as *tetragonal* packed, tp.

NaCl (rocksalt): Fm-3m

- Cubic close-packed layers of Cl⁻ anions (red lines in figure below)
- Na⁺ cations in octahedral interstitials

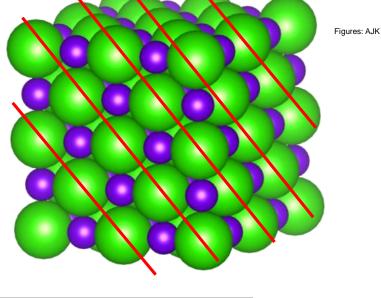
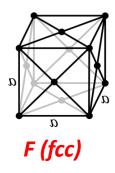
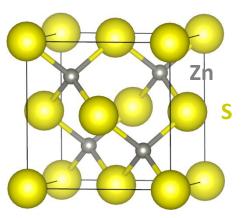
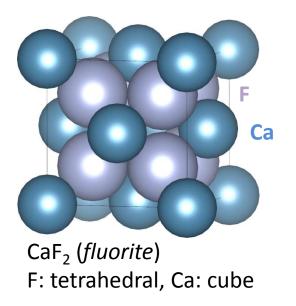



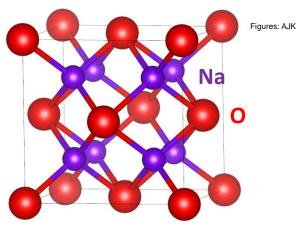
Table 1.8 Some compounds with the NaCl structure, a/Å

MgO	4.213	MgS	5.200	LiF	4.0270	KF	5.347
CaO	4.8105	CaS	5.6948	LiCl	5.1396	KCl	6.2931
SrO	5.160	SrS	6.020	LiBr	5.5013	KBr	6.5966
BaO	5.539	BaS	6.386	Lil	6.00	KI	7.0655
TiO	4.177	α-MnS	5.224	LiH	4.083	RbF	5.6516
MnO	4.445	MgSe	5.462	NaF	4.64	RbCl	6.5810
FeO	4.307	CaSe	5.924	NaCl	5.6402	RbBr	6.889
CoO	4.260	SrSe	6.246	NaBr	5.9772	RbI	7.342
NiO	4.1769	BaSe	6.600	Nal	6.473	AgF	4.92
CdO	4.6953	CaTe	6.356	TiN	4.240	AgCl	5.549
TiC	4.3285	LaN	5.30	UN	4.890	AgBr	5.7745

ZnS (zinc blende): F-43m

- Zn at T⁺ (or T⁻) sites
- Anion and cation sites are interchangeable
- Diamond-like network with two atom types

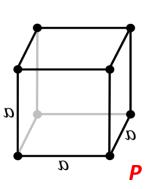

Table 1.9 Some compounds with the zinc blende (sphalerite) structure, a/Å

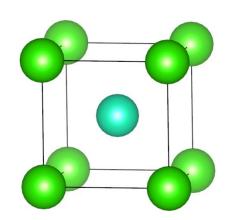
CuF	4.255	BeS	4.8624	β-CdS	5.818	BN	3.616	GaP	5.448
CuCl	5.416	BeSe	5.07	CdSe	6.077	BP	4.538	GaAs	5.6534
γ-CuBr	5.6905	BeTe	5.54	CdTe	6.481	BAs	4.777	GaSb	6.095
γ-Cul	6.051	β-ZnS	5.4060	HgS	5.8517	Alp	5.451	InP	5.869
γ-Agl	6.495	ZnSe	5.667	HgSe	6.085	AlAs	5.662	InAs	6.058
β -MnS, red	5.600	β -SiC	4.358	HgTe	6.453	AlSb	6.1347	InSb	6.4782
C ^a	3.5667	Si	5.4307	Ge	5.6574	α -Sn (grey)	6.4912		

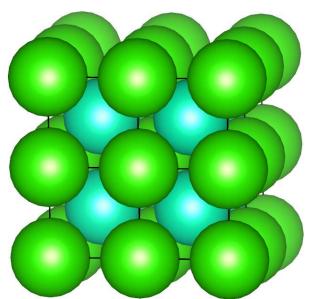
^aDiamond structure.

Fluorite and antifluorite (Fm-3m)

 Na_2O (antifluorite), Na at T⁺ and T⁻ sites

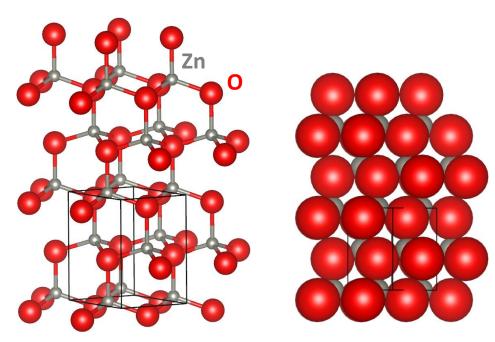

	Fluorite s	structure			Antifluorite	e structure	
CaF_2	5.4626	PbO ₂	5.349	Li ₂ O	4.6114	K ₂ O	6.449
SrF_2	5.800	CeO_2	5.4110	Li ₂ S	5.710	K_2S	7.406
SrCl ₂	6.9767	PrO ₂	5.392	Li ₂ Se	6.002	K ₂ Se	7.692
BaF ₂	6.2001	ThO ₂	5.600	Li ₂ Te	6.517	K ₂ Te	8.168
CdF_2	5.3895	UO ₂	5.372	Na ₂ O	5.55	Rb_2O	6.74
β -PbF ₂	5.940	NpO ₂	5.4334	Na_2S	6.539	Rb_2S	7.65


Table 1.10 Some compounds with fluorite or antifluorite structure, a/Å


CsCl (Pm-3m)

Primitive cubic, **not** body centered cubic since there are different ions at corner and body-center positions!

The anion and cation sites are interchangeable

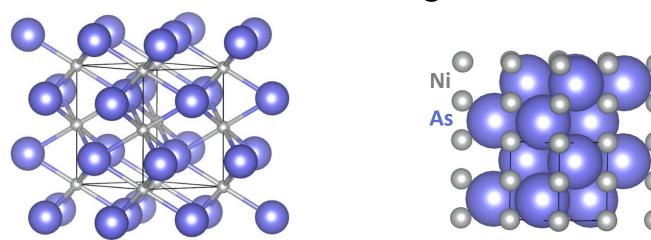


Figures: AJK

 Table 1.14
 Some compounds with the CsCl structure

Compound	a/Å	Compound	a/Å	Compound	<i>a</i> /Å	Compound	a/Å
CsCl CsBr Csl CsCN NH₄Cl	4.123 4.286 4.5667 4.25 3.8756	NH₄Br TICI TIBr TII CuZn	4.0594 3.8340 3.97 4.198 2.945	CuPd AuMg AuZn AgZn LiAg	2.988 3.259 3.19 3.156 3.168	AlNi LiHg MgSr	2.881 3.287 3.900

ZnS (wurtzite): P6₃mc


hcp anion array Zn at T⁺ (or T⁻) sites Both atoms have tetrahedral coordination

Figures: AJK

Table 1.12 Some compounds with the wurtzite structure

Compound	a/Å	c/Å	u	c/a	Compound	a/Å	c/Å	и	c/a
ZnO	3.2495	5.2069	0.345	1.602	Agl	4.580	7.494		1.636
ZnS	3.811	6.234		1.636	AÍN	3.111	4.978	0.385	1.600
ZnSe	3.98	6.53		1.641	GaN	3.180	5.166		1.625
ZnTe	4.27	6.99		1.637	InN	3.533	5.693		1.611
BeO	2.698	4.380	0.378	1.623	TaN	3.05	4.94		1.620
CdS	4.1348	6.7490		1.632	NH ₄ F	4.39	7.02	0.365	1.600
CdSe	4.30	7.02		1.633	SiC	3.076	5.048		1.641
MnS	3.976	6.432		1.618	MnSe	4.12	6.72		1.631

NiAs ($P6_3mc$)

hcp anion array NiAs: Ni at O sites. Coordination: Ni octahedral (6); As trigonal prism (6)

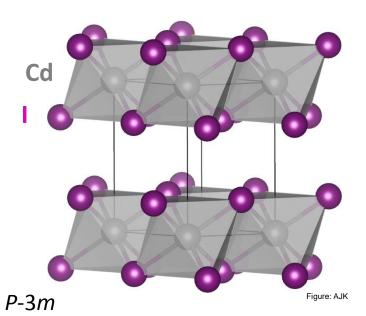

Compound	a/Å	c/Å	c/a	Compound	a/Å	c/Å	c/a
NiS	3.4392	5.3484	1.555	CoS	3.367	5.160	1.533
NiAs	3.602	5.009	1.391	CoSe	3.6294	5.3006	1.460
NiSb	3.94	5.14	1.305	CoTe	3.886	5.360	1.379
NiSe	3.6613	5.3562	1.463	CoSb	3.866	5.188	1.342
NiSn	4.048	5.123	1.266	CrSe	3.684	6.019	1.634
NiTe	3.957	5.354	1.353	CrTe	3.981	6.211	1.560
FeS	3.438	5.880	1.710	CrSb	4.108	5.440	1.324
FeSe	3.637	5.958	1.638	MnTe	4.1429	6.7031	1.618
FeTe	3.800	5.651	1.487	MnAs	3.710	5.691	1.534
FeSb	4.06	5.13	1.264	MnSb	4.120	5.784	1.404
δ' -NbN ^a	2.968	5.549	1.870	MnBi	4.30	6.12	1.423
PtB*	3.358	4.058	1.208	PtSb	4.130	5.472	1.325
PtSn	4.103	5.428	1.323	PtBi	4.315	5.490	1.272

 Table 1.13
 Some compounds with the NiAs structure

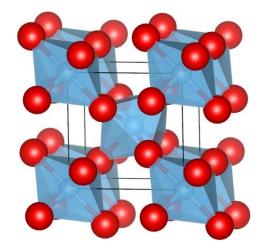
Figures: AJK

Cdl₂ (*P*-3*m*)

- *hcp* anion array
- Cations at the O sites (1/2 occupation)

Ref: West p. 53

Table 1.16Some compounds with the Cdl2 structure

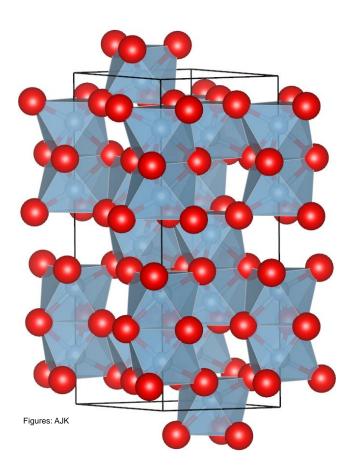

Compound	a/Å	c/Å	Compound	a/Å	c/Å
Cdl ₂	4.24	6.84	VBr ₂	3.768	6.180
Cal_2	4.48	6.96	TiBr ₂	3.629	6.492
Col ₂	3.96	6.65	MnBr ₂	3.82	6.19
Fel_2	4.04	6.75	FeBr ₂	3.74	6.17
MgI_2	4.14	6.88	CoBr ₂	3.68	6.12
Mnl ₂	4.16	6.82	TiCl ₂	3.561	5.875
Pbl_2	4.555	6.977	VCl_2	3.601	5.835
ThI_2	4.13	7.02	$Mg(OH)_2$	3.147	4.769
Til ₂	4.110	6.820	$Ca(OH)_2$	3.584	4.896
Tml ₂	4.520	6.967	$Fe(OH)_2$	3.258	4.605
VI_2	4.000	6.670	$Co(OH)_2$	3.173	4.640
Ybl ₂	4.503	6.972	Ni(OH) ₂	3.117	4.595
$ZnI_2(I)$	4.25	6.54	$Cd(OH)_2$	3.48	4.67

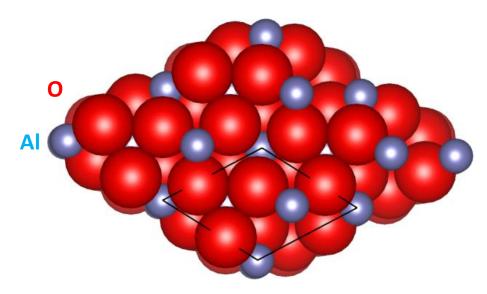
Interatomic distances in some simple structures

T 4 44	
Table 1.11	Calculation of interatomic distances in some simple structures
TRADIC TITLE	curculation of interationine distances in some simple structures

Structure type	Distance	Number of such distances	Magnitude of distance in terms of unit cell dimensions
Rock salt (cubic)	Na-Cl	6	a/2 = 0.5a
	Cl-Cl	12	$a/\sqrt{2} = 0.707a$
	Na-Na	12	$a/\sqrt{2} = 0.707a$
Zinc blende (cubic)	Zn–S	4	$a\sqrt{3}/4 = 0.433a$
	Zn–Zn	12	$a/\sqrt{2} = 0.707a$
	S–S	12	$a/\sqrt{2} = 0.707a$
Fluorite (cubic)	Ca-F	4 or 8	$a\sqrt{3}/4 = 0.433a$
	Ca-Ca	12	$a/\sqrt{2} = 0.707a$
	F-F	6	a/2 = 0.5a
Wurtzite ^a (hexagonal)	Zn–S	4	$a\sqrt{3}/8 = 0.612a = 3c/8 = 0.375c$
	Zn–Zn	12	a = 0.612c
	S–S	12	a = 0.612c
Nickel arsenide ^a (hexagonal)	Ni–As	6	$a/\sqrt{2} = 0.707a = 0.433c$
	As–As	12	a = 0.612c
	Ni–Ni	2	c/2 = 0.5c = 0.816a
	Ni–Ni	6	a = 0.612c
Caesium chloride (cubic)	Cs–Cl	8	$a\sqrt{3}/2 = 0.866a$
	Cs–Cs	6	a
	Cl–Cl	6	a
Cadmium iodide (hexagonal)	Cd–I	6	$a/\sqrt{2} = 0.707a = 0.433c$
	I–I	12	a = 0.612c
	Cd–Cd	6	a = 0.612c

^aThese formulae do not necessarily apply when c/a is different from the ideal value of 1.633.


Metal oxide structure types


Interstitial sites in close-packed lattices of oxygen anions

	Interstitial sites			
Anion arrangement	T ₊ T_		0	Examples
ccp	- 1 1/8	- - 1/8	1 - 1/2 1/2	NaCl, rock salt ZnS, blende or sphalerite MgAl ₂ O ₄ , spinel CdCl ₂
	- 1	- 1	1/3	$CrCl_3$ K_2O , antifluorite
hcp	- 1 -	- - -	1 - 1/2	NiAs ZnS, wurtzite Cdl ₂
	- - 1/8	- - 1/8	1/2 2/3 1/2	TiO ₂ , rutile ^ª Al ₂ O ₃ , corundum Mg ₂ SiO ₄ , olivine
ccp 'BaO ₃ ' layers	-	_	1/4	BaTiO ₃ , perovskite

^aThe hcp oxide layers in rutile are not planar but are buckled; the oxide arrangement may alternatively be described as tetragonal packed, tp.

Al_2O_3 (corundum): *R*-3*c*

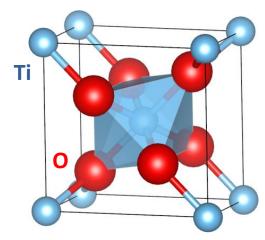


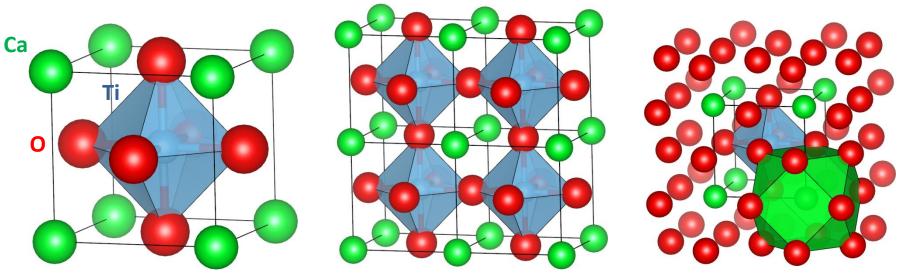
Table 1.24 Some compounds with corundum-related structures

Corundum	M_2O_3 : M = Al, Cr, Fe (hematite), Ti, V, Ga, Rh
(a-alumina)	Al_2O_3 : with Cr dopant (ruby)
	Al_2O_3 : with Ti dopant (sapphire)
Ilmenite	$MTiO_3$: M = Mg, Mn, Fe, Co, Ni, Zn, Cd
	$MgSnO_3$, CdSnO_3
	NiMnO ₃
	NaSbO ₃
LiNbO ₃ , LiTaO ₃	

hcp anion lattice 2/3 of O sites occupied by cations

TiO₂ (rutile): P4₂/mnm

Distorted *hcp* anion lattice 1/2 of O sites occupied by cations


а

С

Table 1.15	Some compounds with the rutile structure
------------	--

Compound	a/Å	c/Å	X	Compound	a/Å	c/Å	X
TiO ₂	4.5937	2.9581	0.305	CoF ₂	4.6951	3.1796	0.306
CrO ₂	4.41	2.91		FeF_2	4.6966	3.3091	0.300
GeO ₂	4.395	2.859	0.307	MgF_2	4.623	3.052	0.303
IrO ₂	4.49	3.14		MnF_2	4.8734	3.3099	0.305
β -MnO ₂	4.396	2.871	0.302	NiF ₂	4.6506	3.0836	0.302
MoO ₂	4.86	2.79		PdF_2	4.931	3.367	
NbO ₂	4.77	2.96		ZnF_2	4.7034	3.1335	0.303
OsO ₂	4.51	3.19		SnO ₂	4.7373	3.1864	0.307
PbO ₂	4.946	3.379		TaO ₂	4.709	3.065	
RuO ₂	4.51	3.11		WO ₂	4.86	2.77	

CaTiO₃ (perovskite): *Pm*-3*m*

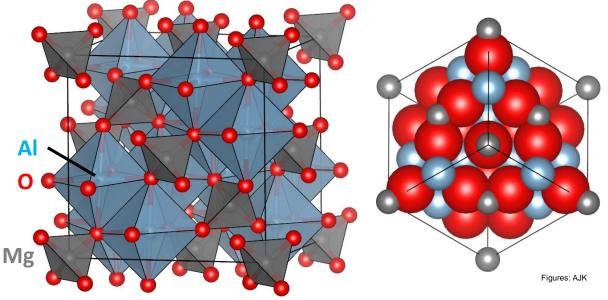
Figures: AJK

General formula ABX_3 , where A and B are cations and X is anion In oxides, ABO_3 , for example $A^{2+}B^{4+}O_3$ in $CaTiO_3$ *ccp* anion array, B cations at octahedral sites

Compound	a/Å	Compound	a/Å	Compound	a/Å
KNbO₃	4.007	LaFeO ₃	3.920		
KTaO ₃	3.9885	LaGaO ₃	3.875	$CsCaF_3$	4.522
KIO ₃	4.410	LaVO ₃	3.99	CsCdBr ₃	5.33
NaNbO ₃	3.915	SrTiO ₃	3.9051	CsCdCl ₃	5.20
NaWO ₃	3.8622	$SrZrO_3$	4.101	CsHgBr ₃	5.77
LaCoO ₃	3.824	SrHfO ₃	4.069	CsHgCl ₃	5.44
LaCrO₃	3.874	SrSnO ₃	4.0334	Ū.	

 Table 1.18
 Some compounds with the perovskite structure

MgAl₂O₄ (spinel): *Fd*-3*m*


ccp anion array, general formula AB_2O_4

Mg (A cation) in tetrahedral interstitials (1/8 occupied)

Al (B cation) in octahedral interstitials (2/4 occupied)

AB₂O₄ structures with different cation charge combinations are possible:

2, 3	as in	$MgAl_2O_4$
2,4	as in	Mg_2TiO_4
1, 3, 4	as in	LiAlTiO ₄
1, 3	as in	$Li_{0.5}Al_{2.5}O_4$
1, 2, 5	as in	LiNiVO ₄
1, 6	as in	Na_2WO_4

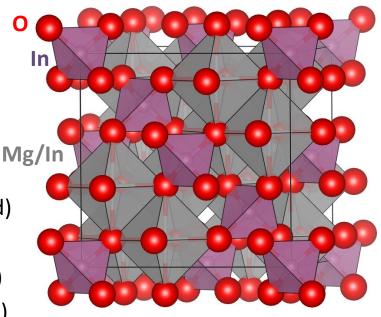


Table 1.22 Some compounds with the spinel structure

Compound	Туре	a/Å	Structure	Compound	Туре	a/Å	Structure
$MgAl_2O_4$	2, 3	8.0800	Normal	$MgIn_2O_4$	2, 3	8.81	Inverse
CoAl ₂ O ₄	2, 3	8.1068	Normal	MgIn ₂ S ₄	2, 3	10.708	Inverse
$CuCr_2S_4$	2, 3	9.629	Normal	Mg ₂ TiO ₄	2, 4	8.44	Inverse
CuCr ₂ Se ₄	2, 3	10.357	Normal	Zn ₂ SnO ₄	2, 4	8.70	Inverse
CuCr ₂ Te ₄	2, 3	11.051	Normal	Zn ₂ TiO ₄	2, 4	8.467	Inverse
MgTi ₂ O ₄	2, 3	8.474	Normal	LiAlTiO4	1, 3, 4	8.34	Li in tet
Co₂GeO₄	2, 4	8.318	Normal	LiMnTiO₄	1, 3, 4	8.30	Li in tet
Fe ₂ GeO ₄	2, 4	8.411	Normal	LiZnSbO₄	1, 2, 5	8.55	Li in tet
$MgFe_2O_4$	2, 3	8.389	Inverse	LiCoSbO4	1, 2, 5	8.56	Li in tet
NiFe ₂ O ₄	2, 3	8.3532	Inverse	4	, -, -	_	17

Inverse spinel

- AB₂O₄, with all A cations at octahedral sites
- Half of the B cations at octahedral sites
- Other half of the B cations at tetrahedral sites
- MgIn₂O₄ (*Fd*-3*m*)
 - fcc anion lattice
 - Mg (A) in octahedral interstitials (1/4 occupied)
 - In (B) in octahedral interstitials (1/4 occupied)
 - In (B) in tetrahedral interstitials (1/8 occupied)
- With one metal: Fe_3O_4 with A = Fe(II) and B = Fe(III)

Figures: AJK

Compound	Туре	a/Å	Structure	Compound	Туре	a/Å	Structure
$MgAl_2O_4$	2,3	8.0800	Normal	MgIn ₂ O ₄	2, 3	8.81	Inverse
$CoAl_2O_4$	2, 3	8.1068	Normal	$MgIn_2S_4$	2, 3	10.708	Inverse
$CuCr_2S_4$	2, 3	9.629	Normal	Mg ₂ TiO ₄	2, 4	8.44	Inverse
$CuCr_2Se_4$	2, 3	10.357	Normal	Zn_2SnO_4	2, 4	8.70	Inverse
$CuCr_2Te_4$	2, 3	11.051	Normal	Zn ₂ TiO ₄	2, 4	8.467	Inverse
MgTi ₂ O ₄	2, 3	8.474	Normal	LiAlTiO ₄	1, 3, 4	8.34	Li in tet
Co ₂ GeO ₄	2, 4	8.318	Normal	LiMnTiO ₄	1, 3, 4	8.30	Li in tet
Fe ₂ GeO ₄	2, 4	8.411	Normal	LiZnSbO ₄	1, 2, 5	8.55	Li in tet
$MgFe_2O_4$	2, 3	8.389	Inverse	LiCoSbO ₄	1, 2, 5	8.56	Li in tet
NiFe ₂ O ₄	2, 3	8.3532	Inverse	4	, ,		

 Table 1.22
 Some compounds with the spinel structure