Agenda

- Case studies: MinVC and MaxIS
- Parameterisation
- Exact exponential algorithms
- Other approaches
There are intractable problems that we don’t know how to solve in polynomial time

- How to deal with such problems in practice?

Today we look at various approaches to this question:

- Parameterised algorithms
- Faster exact exponential algorithms
- Restricted subproblems
- Heuristics
Case 1: **MinVC on Trees**

Minimum Vertex Cover (MinVC)

- **Instance:** Graph $G = (V, E)$, an integer $k \geq 1$.
- **Question:** Is there a set of vertices C such that $|C| \leq k$ and for all $\{u, v\} \in E$, either $v \in C$ or $u \in C$ (or both)?

- **Trivial algorithm for finding minimum vertex cover:**
 - Try all possible sets $C \subseteq V$
 - Check if C is a vertex cover
 - Running time: $2^n \text{poly}(n)$

- **Consider finding minimum vertex cover on trees**
 - A graph $G = (V, E)$ is a tree if G does not contain cycles
 - Arbitrarily choose one vertex as the root
Case 1: MinVC on Trees

- **Greedy algorithm finds an optimal vertex cover on trees:**
 - Any parent u of a leaf v can always be selected to be in an optimal vertex cover
 - Edge $\{u,v\}$ needs to be covered, so either u or v is in any optimal cover
 - v does not cover other edges, so we can always replace it with u
 - We can thus greedily select all parents of the leaves, and remove covered edges

- **Running time is polynomial in the size of input**
- **Minimum vertex cover on trees** is in polynomial time
Case 2: **Parameterised MinVC**

- **Another perspective on VC: how does the complexity depend on parameter k?**
 - the NP-completeness proof roughly says that the problem is difficult if $k \approx 6|V|/7$
 - What if e.g. $k = O(\log |V|)$?

- **Trivial algorithm for a small minimum vertex cover:**
 - Try all possible sets $C \subseteq V$ with $|C| \leq k$
 - Check if C is a vertex cover
 - Running time: roughly $O(n^k)$
Case 2: Parameterised MinVC

Decision algorithm for vertex cover

Input: graph $G = (V, E), k$

- If $k = 0$ and G has an edge, reject. If $k = 0$ and G has no edges, accept.
- Select an arbitrary edge $e = \{u, v\}$ from the graph.
- Try adding one of the endpoints of e to the vertex cover and recursively call the algorithm to determine if either of the cases can be completed to a vertex cover of size k:
 - Call this algorithm recursively on $(G \setminus v, k - 1)$
 - Call this algorithm recursively on $(G \setminus u, k - 1)$
- Accept if one of the recursive calls accepts; otherwise reject.
Case 2: **Parameterised MinVC**

- **Algorithm finds a vertex cover of size k if one exists:**
 - Since any vertex cover contains at least one endpoint of each edge, the recursion will have a branch corresponding to any vertex cover of size k

- **Algorithm runs in time $2^k \text{poly}(n)$:**
 - Since the parameter k decreases by one each time the algorithm is called, the depth of the recursion tree is at most k
 - Total size of the recursion tree is thus at most 2^k
Case 3: Exact Algorithm for MaxIS

Maximum Independent Set (MaxIS)

- **Instance:** Graph $G = (V, E)$, an integer $k \geq 1$.
- **Question:** Is there a set of vertices I such that $|I| \geq k$ and for all $u, v \in I$, we have that $\{u, v\} \notin E$?

- **Trivial algorithm for finding a MaxIS:**
 - Try all possible sets $C \subseteq V$
 - Check if C is an independent set
 - Running time: $2^n \text{ poly}(n)$
 - *Can we do better?*
Case 3: Exact Algorithm for MaxIS

- In the following, $N[v]$ denotes the closed neighbourhood of v, that is,

 $$N[v] = \{v\} \cup \{u \in V : \{u, v\} \in E\}$$

An algorithm for independent set

Input: graph $G = (V, E)$, **Output:** size of maximum IS

- If $|V| = 0$, return 0.
- Select the vertex $v \in V$ with smallest degree.
 - Recursively compute the size s_u of the maximum independent set for $G \setminus N[u]$ for all $u \in N[v]$
 - Return $1 + \min_{u \in N[v]} s_u$
Case 3: **Exact Algorithm for MaxIS**

- **Algorithm finds the size of the maximum IS:**
 - Recursion tries all possible choices
 - For any vertex v, at least one vertex in $N[v]$ is in any maximum independent set

- **Complexity analysis:**
 - Size of the recursion tree is given by the recurrence

\[
T(n) \leq T(n - \deg(v) - 1) + \sum_{u \in N[v]} T(n - \deg(u) - 1),
\]

where v is the vertex chosen by the algorithm
Case 3: Exact Algorithm for MaxIS

- **Analysis of the recurrence:**
 - Since the algorithm picks the vertex with smallest degree, we have $\deg(v) \leq \deg(u)$ for all $u \in N[v]$
 - Thus, we have $T(n) \leq (\deg(v) + 1)T(n - \deg(v) - 1)$
 - Writing $s = \deg(v) + 1$, we have
 \[
 T(n) \leq sT(n - s) \leq 1 + s + s^2 + \cdots + s^{n/s}
 \leq 1 - s^{n/s+1}/1-s = s^{n/s} \text{ poly}(n,s)
 \]
 - $s^{n/s}$ is maximised by $s = 3$ (for integers)
- **MaxIS can be solved in time** $3^{n/3} \text{ poly}(n) \approx 1.44^n \text{ poly}(n)$
Parameterised Problems

Definition

Parameterisation and parameterised problems

- A *parameterisation* is a polynomial-time computable function $k: \{0,1\}^* \rightarrow \mathbb{N}$.

- A *parameterised problem* is a pair (L, k), where $L \subseteq \{0,1\}^*$ is a language and k is a parameterisation.

- **Parameter can describe any aspect of the instance**
 - Simple examples: number of vertices, number of edges
 - Define parameter to be e.g. 0 for non-valid instances

- **Basic approach of parameterised complexity:** *study complexity in terms of different parameters*
Parameterised Problems

- **Natural parameter for optimisation-style problems:**
 - *size of the solution*

Parameterised Vertex Cover

- **Instance:** Graph $G = (V, E)$, an integer $k \geq 1$.
- **Parameter:** k.
- **Question:** Is there a set of vertices C such that $|C| \leq k$ and for all $\{u, v\} \in E$, either $v \in C$ or $u \in C$ (or both)?
Fixed-parameter Tractability

Definition

A parameterised problems \((L, k)\) is \textit{fixed-parameter tractable (FPT)} if there is a computable function \(f: \mathbb{N} \rightarrow \mathbb{N}\), polynomial \(p\) and a Turing machine \(M\) such that \(M\) decides \(L\) and runs in time

\[f(k(x)) \cdot p(|x|) \]

for all \(x \in \{0, 1\}^*\)

- **Fixed-parameter algorithm isolates the non-polynomial behaviour to the parameter**
 - For constant parameter, the problem is polynomial-time solvable
Fixed-parameter Tractability

- Some fixed-parameter tractable problems
 - \textit{Vertex cover} parameterised by the solution size
 - \textit{k-path} parameterised by \(k \)
 - \textit{CNF-SAT} parameterised by the number of variables

- Not FPT unless \(P = NP \)
 - \textit{Colouring} parameterised by the number of colours

- What about \textit{independent set} (parameterised by solution size)?
FPT Reductions

Definition

An *FPT reduction* from a parameterised problem \((L, k)\) to a parameterised problem \((L', k')\) is a mapping \(R: \{0, 1\}^* \rightarrow \{0, 1\}^*\) such that

- \(x \in L\) if and only if \(R(x) \in L'\),
- \(R\) is computable in time \(f(k(x)) \text{poly}(n)\), and
- there is a computable function \(g: \mathbb{N} \rightarrow \mathbb{N}\) such that \(k'(R(x)) \leq g(k(x))\) for all \(x \in \{0, 1\}^*\).

- **FPT reductions preserve fixed-parameter tractability**
 - Theory of fixed-parameter intractability is based on FPT reductions
W[1] and W[2]

- There is a hierarchy of classes $W[1], W[2], \ldots$ of parameterised problems believed not to be FPT
- Exact definition of class $W[t]$ is somewhat technical
- Complete problems for $W[1]$ under FPT reductions:
 - *Independent set* parameterised by the solution size
 - Deciding if a nondeterministic *single-tape* Turing machine accepts the empty string in k steps, parameterised by k
- Complete problems for $W[2]$ under FPT reductions:
 - *Dominating set* parameterised by the solution size
 - Deciding if a nondeterministic *multi-tape* Turing machine accepts the empty string in k steps, parameterised by k
Definition

A parameterised problems \((L, k)\) is in \textit{class XP} if there is a computable function \(f : \mathbb{N} \rightarrow \mathbb{N}\), a constant \(c\) and a Turing machine \(M\) such that \(M\) decides \(L\) and runs in time \(c \cdot |x|^{f(k(x))}\) for all \(x \in \{0, 1\}^*\).

- Problems in XP have polynomial-time solutions for constant parameter
 - The \textit{degree} of the polynomial can grow very quickly
- FPT \(\subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq XP\)
Exact Exponential Algorithm

- **Assuming** $P \neq NP$, **we cannot solve certain problems in polynomial time**
 - Can we still solve them fast enough?
 - 1.0001^n is better than n^{100} in practice
 - *Warning*: many ‘fast’ exact algorithms are not really practical

- **Exact exponential algorithmics studies less bad exponential algorithms**
Examples of exact exponential algorithms:

- *Maximum independent set* can be solved in time $O(1.1996^n)$
- *Undirected Hamiltonian cycle* can be solved in time $O(1.657^n)$
- *TSP* can be solved in time $O(2^n n^2)$

Typical questions:

- What is the best δ such that we can solve a given problem in time $O(\delta^n)$?
- Can we solve a given problem in subexponential time? (taken to mean $2^{o(1)}$ in this context)
Exponential Time Hypotheses

- For CNF-SAT, the best algorithm has complexity about $2^n \text{ poly}(n, m)$ (n variables, m clauses)
 - Is there an $O((2 - \varepsilon)^n)$ algorithm?
 - Is there a subexponential algorithm?

- This gives raise to two hypotheses:
 - *Exponential time hypothesis (ETH)*:
 - no $2^{o(n)}$ algorithm for CNF-SAT
 - *Strong exponential time hypothesis (SETH)*:
 - no $O((2 - \varepsilon)^n)$ algorithm for CNF-SAT for any $\varepsilon > 0$
 - Not necessarily widely believed
 - Can still be used to prove lower bounds for other problems via fine-grained reductions
Restricted Subproblems

- For understanding NP-hard problem, a common solution is to look at *restricted subproblems*
 - Example: TSP, Metric TSP, Euclidean TSP
 - Subproblems may be easier than the problem itself

- For graph problems, this often means considering restricted input graphs:
 - *Trees*: many common problems are polynomial-time solvable on trees, but not everything
 - *Planar graphs*: graphs that can be drawn on a plane without edges crossing
 - *Bounded treewidth graphs*: generalisation of trees, important in fixed-parameter complexity
Heuristics

- **Heuristics** are algorithmic techniques without theoretical guarantees
 - Common outside theoretical computer science
 - However, often useful in practice

- **Heuristics can fail in many ways:**
 - No running time guarantees
 - May not find an optimal solution, just a feasible one
 - No approximation guarantees
 - May fail to find a solution when one exists, or fail to detect that solution does not exist
Heuristics

- Heuristics are not necessarily incompatible with theory
 - Ideally: *theoretical guarantees* + *heuristics*

- Case: *SAT solvers* for CNF-SAT
 - Modern SAT solvers use heuristic algorithms to find a solution quickly if one exists
 - Since a solutions can be verified, yes-instances can often be solved very quickly
 - Does not necessarily help with no-instances

- This makes SAT solvers a powerful tool in practical algorithmics when a reduction to CNF-SAT is feasible
Lecture 14: Summary

- Fixed-parameter tractability
- W[1]-hard and W[2]-hard problems
- Exact Exponential Algorithms
- Restricted subproblems
- Heuristics