

Project Course in Computation and Modelling in Engineering Rak: C3005

Vishal Singh, Assistant Professor Department of Civil Engineering, Aalto University

Course: Learning outcomes

LO1: Gain hands-on experience in transforming a problem stated in plain language into computational form

LO2: Able to select and apply one or more of the computational modelling approaches in engineering that suits the given problem

LO3: Understand the practical challenges in implementing and applying the chosen method

LO4: Understand the strengths and weaknesses of the applied methodology

Approach and expectations

- Problem based learning
- Mentors and supervisors
- Tangible solutions/ Presentable to exhibit
- Focus on method and exploration

Timetable of activities

Date	Sessions	Activities	Milestones
25.2.	Class	Overview of the course + preliminary discussion	
4.3.	Class	Project discussions- Brainstorming preliminary ideas	Preliminary ideas
11.3.	Class	Problem formulation and selection for projects	Common reading review- documented
18.3.	No Class	Reading break-	Ecourad literature
25.3.	Class	Problem discussion and refinement- Discussion on alternatives for each project	selection and reading
1.4.	Class	Optional class- discussion on alternatives	Focused literature review- documented
8.4.	Class	Mid-course presentations	Report alternatives
15.4. 22.4. 29.4. 6.5.	Meetings With supervisor	Detailing one technique- (<i>No class</i>)- arrange meeting with supervisors. Time and place to be agreed between students and supervisors	
13.5.	Class	Final presentations	Demonstration
20.5.	Submission	Report+ Poster Submission	Final reports

Teachers

Vishal Singh

BIM/ Generative design/ Agent based modeling

Toni Kotnik

Design of structures/ Parametric design

Jarkko Niiranen

Design of structures/ FEM/ Numerical methods

Heikki Remes

Marine structures

Assessment method

- Project work (55%) including how it followed the timeline
- Literature review report (10%)
- Mid-presentation (5%)
- Final presentation (10%)
- Project report (20%) submitted at the end of the project

Project report

- A template structure will be provided
- Approx. 15 pages (including references, excluding appendix)
- Append copies of digital mock-ups, presentations, analysis

Computation and Modelling

Model

- Fashion model
- Role model
- Theoretical model
- Conceptual model
- Business model
- Physical model
- Virtual model

13 WAYS TO BE A GOOD

Figure 1. Theoretical model of suspension bridge.

Hirai's research on lateral torsional buckling of suspension bridge starts at the Equation 1.

$$EI\frac{d^{4}\eta}{dx^{4}} - 2H_{\omega}\frac{d^{4}\eta}{dx^{4}} - 2h_{i}\frac{d^{2}y}{dx^{2}} + \frac{d^{2}}{dx^{2}}(M\varphi) - (S + (C_{d}))pb\varphi = 0$$

$$M\frac{d^{2}\eta}{dx^{2}} - EC_{\omega}\frac{d^{4}\eta}{dx^{4}} - \left(GK + \frac{H_{\omega}b^{2}}{2}\right)\frac{d^{2}\eta}{dx^{2}} - bh_{2}\frac{d^{2}y}{dx^{2}} - S_{r}pb\varphi^{2} = 0$$

Where, η and ϕ mean main girder's buckling displacement in vertical and torsional

COMPUTATIONAL THINKING

Example: Approach to decompose a problem

Computation and Modelling

- **Computation:** Calculation or information processing
- **Modeling:** Representation, structure, relationships...

Computation and Modelling-Representation/ structure/ relationships-?

Conceptual to computational

- Ontologies
- Parameters, variables, constraints, objective functions
- Flowcharts
- UML (Unified Modelling Language) diagrams
- Pseudocodes and algorithms
- Data Structures...

Ontology

- Nature of being
- Types, properties, interrelationships between entities of a given domain
- Domain-agnostic/ Higher level ontologies*

Example: FBS Ontology in design- Gero

Formulation (1) Synthesis (2) Analysis (3) Evaluation (4) Documentation (5) Reformulation type 1 (6) Reformulation type 2 (7) Reformulation type 3 (8)

*

UML diagrams

Solutions depend on how you define the problem!

Example: Computing the value of pi?

Example: Computing the value of pi?

- Archimedes' method (deterministic)
- Monte Carlo technique (stochastic)

http://www.math.ubc.ca/~cass/courses/m446-03/pi.pdf

http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html

Example project-Site layout

Site layout- Using shape grammar

Design Grammar

Shape Grammar (SG)

- Set of terminal shapes
- Set of operators
- Set of production rules
- Initial shape

CityEngine°

Site layout-Using Cellular Automata

Cellular automata

- Grid/ Matrix
- Cell states
- Neighbourhood relationships
- Set of rules
- Assumption of universality

Moore neighbourhood

von Neumann neighbourhood

Site layout- Using Cellular Automata

Site layout: Using Agent Based Model

Aggregate Dynamics for Dense Crowd Simulation

Submission 0042

Agent based models/ Multi-agent systems

- Autonomous agents
- Set of actions/ goals/ behaviour/ intentions
- Interaction with each other and the environment
- Influence/ forces/ "social physics"
- Agents: usually people but ...

Other methods...

Voronoi diagram, spring mass models, gravitational model ...

Solutions depend on how you define the problem!

BUT

Defining Problem-solution approach depends on assumptions you make!

Assumptions in problem solving Method (PSM)

- Teleological assumption- (problem definition)- gap between the problem solving method (PSM) and goal
 - These assumptions (weaken) reduce the complexity of the problem

- Ontological assumption- (problem representation)- gap between the PSM and the domain knowledge (approximation)
 - With greater domain knowledge these assumptions strengthen the PSM
 - These also reduce the complexity of part of the problem

Requirements from the course

- Understand problem context
- Define problem in plain language
- Investigate problem requirements
- Define problem conceptually
- Narrow down key parameters, variables, functions
- Note your assumptions. Reflect on the role of the assumption.
- Define/ represent problem computationally
- Explore different alterative representations
- Choose one of the alternatives (justify)
- Implement the chosen alternative
- Report the solution as well as the entire process!

Online references- quick read

https://courses.edx.org/c4x/MITx/6.00.1x/asset/files_ps04_files_WhyPseudocode.pdf

https://www.ibm.com/developerworks/rational/library/769.html

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

https://protege.stanford.edu/publications/ontology_development/ontology101-noymcguinness.html

https://www.w3schools.in/data-structures-tutorial/intro/

https://ampl.com/BOOK/CHAPTERS/11-linprog.pdf

http://www.me.utexas.edu/~jensen/or_site/models/unit/lp_model/lp_terms/lp_terms.html

Questions?

Thank You!