

PHYS-E0421 Solid-State Physics (5cr), Spring 2019

Dr. Hannu-Pekka Komsa Prof. Martti Puska MSc Arsalan Hashemi, Rina Ibragimova

Lecture 3, 4/3/2019

- Electrical conductivity = how electrons behave under electric field
- Remarks related to homeworks?

- Not yet conductivity! That's next lecture.

- Bloch electrons are a good basis for considering real lattice
- Wave packet as a sum over Bloch states: sum_k c_k psi_k, Gaussian distribution c_k yields Gaussian wave packet envelope in real space
- Wave packet with well-defined k (and v_g) requires small delta k. Thus extended in real space and individual atoms are not important in their description.
- All the needed information from atomic level is included in the band structure (velocity, effective mass)
- In principle, electric field breaks the translational symmetry/periodicity of the lattice. Typically very small potential over the scale of unit cell.

- Semiclassical picture, "leap of faith", justification from quantum mechanics is complicated
- Electric potential $U = -Ed$, $d = v_g^*t$, units: potential in $V = v$ work in eV
- k moves parallel to E.
- With magnetic field $F = -e(E+v \times B)$, k moves perpendicular to v and B.

- In free electron model,"creeping up" the band structure corresponds to increased velocity (=classical picture). No interaction with the lattice.
- (Bloch) oscillations in partially filled band. Velocity and position oscillates due to scattering with the lattice.
- Full band: everything should be moving but nothing seems to change.

- Classically acceleration of electron by the field $a = dv_g/dt = F/m = -eE/m$
- With magnetic field $F = -e(E+v \times B)$

- As said, all the needed information from atomic level is included in the band structure (velocity, effective mass). They describe the interaction/scattering with the lattice.
- At the switch from positive to negative curvature/mass => zero curvature = infinite mass
- These affect how the acceleration under E-field is affected, i.e., F=ma, becomes deceleration
- Flat bands (or small bandwidth) => high effective mass. Localized electrons more difficult to move than delocalized ones (remember KCl from in-class exercise).

- Properties given with respect to filled electron band
- v and m can be determined from energy and k

- dk/(4pi^3) gives the number of electronic states within dk and accounting for spin.
- [Integration of dk/(8pi^3) over Brillouin zone yields 1/(primitive cell volume).]

- From time-reversal symmetry T psi (t) = psi λ^* (-t) => T psi_k = psi_-k
- Metals vs semiconductors
- Valence vs core electrons

- All electrons in a partially filled band move in k-space concurrently (left), the hole as well
- Last form can be thought of as integral over missing electrons or integral over holes (positive charge, opposive wave vector)
- Due to opposite wave-vector it moves in real-space in same direction as electric field (as expected of positively charged particle)

- Free electron model => spherical Fermi-surface
- Also from Drude model, eqn. (6.7,6.8), $p = m^*v = -e^*tau^*E = hbar^*k$, where tau is average time between collisions

- Scattering only possible to unoccupied states

- Wave packet broadens even if the momentum distribution remains the same.

- Rate of change in state occupation as a sum over probabilities to all final states k' => lifetime of state k
- Like Fermi's golden rule…
- Psi = sum_k c_k(t) psi_k, nothing happens if we have just the unperturbed Hamiltonian (with eigenstates psi_k)
- Using time-dependent perturbation: $c_k'(t) \sim \text{sum}_k w_k'(t)$, i.e., w corresponds to shift in amplitude

- Rate $R_d = N_d \Sigma_d v_F$
- N_d is density of defects, Σ_d cross section, and v velocity
- Independent of temperature
- Dominates at very low temperatures
- Elastic

- Annihilated phonon (left), created phonon (right)

- I.e., exponent needs to be equal to G
- As shown in Elliott: $H' \sim u.q$, thus only longitudinal phonons couple to electrons
- Drawing D3.2 for understanding the dipolar potential perturbation and how electron feels it in transverse vs. longitudinal cases.

- Two Brillouin zones showing Fermi-surfaces
- A->B umklapp, C->D normal
- Everything happening close to Fermi-surface: occupied vs empty states, at low T small wave vector (and energy) of (acoustic) phonons. Room temp: kT about 26 meV
- See the example band structures and phonon dispersion of aluminum

- Also called "crystal momentum"
- Consider momentum in free-electron model in extended vs folded zone schemes: exp(ik.r) vs exp(i((k+G)-G).r)=exp(ik'.r)*exp(-iG.r)=exp(ik'.r)*u(r)
- Momentum conservation arises when Lagrangian is invariant under translation symmetry (continuous space). Also holds for (expectation value of) momentum in QM. And transforms to conservation of k when we consider simple wave packets.
- Here translation symmetry is discrete, constrained to lattice points.

- Illustrate potential well for electrons arising from Coulomb potentials of the nuclei…
- In infinite system we can still have nonzero momentum, since there are no boundaries, I think.
- Phonons solved from potential energy, no kinetic energy was considered.

- High number of phonons per mode affects the amplitude and thus the scattering probability

- Only (E2-EF)/EF fraction of electrons 2 can scatter with electron 1
- Volume of spherical shell vs volume of sphere ~3(E1-EF)/EF. Alternatively consider some DOS profile, if flat then g*(E1-EF)/(g*EF). Or a fraction (k_1 k_F/K_F
- States 3 and 4 should be empty states, but quasimomentum conservation forces them close to Fermi-surface

- Scattering from a static lattice defect is elastic, whereas scattering \bullet from a time-dependent one, such as a phonon, is inelastic.
- Only inelastic scattering events are effective in restoring a non- \bullet equilibrium distribution of electrons towards equilibrium
- The Pauli exclusion principle has an important role when the \bullet importance of electron-electron scattering is considered
- Electron-electron scattering is very rare event compared to defect or \bullet phonon scattering. This is another justification for the model of noninteracting electrons. It is a good approximation to neglect this process.

