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- Electrical conductivity = how electrons behave under electric field

- Remarks related to homeworks?
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- Not yet conductivity! That’s next lecture.
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- Bloch electrons are a good basis for considering real lattice

- Wave packet as a sum over Bloch states: sum_k c_k psi_k, Gaussian

distribution c_k yields Gaussian wave packet envelope in real space

- Wave packet with well-defined k (and v_g) requires small delta k. Thus 

extended in real space and individual atoms are not important in their 

description.

- All the needed information from atomic level is included in the band

structure (velocity, effective mass)

- In principle, electric field breaks the translational symmetry/periodicity of the

lattice. Typically very small potential over the scale of unit cell.
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- Semiclassical picture, ”leap of faith”, justification from quantum mechanics is 

complicated

- Electric potential U = -Ed, d = v_g*t, units: potential in V => work in eV

- k moves parallel to E.

- With magnetic field F = -e(E+v x B), k moves perpendicular to v and B.
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- In free electron model,”creeping up” the band structure corresponds to 

increased velocity (=classical picture). No interaction with the lattice.

- (Bloch) oscillations in partially filled band. Velocity and position oscillates

due to scattering with the lattice.

- Full band: everything should be moving but nothing seems to change. 
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- Classically acceleration of electron by the field a = dv_g/dt = F/m = -eE/m

- With magnetic field F = -e(E+v x B)
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- As said, all the needed information from atomic level is included in the band

structure (velocity, effective mass). They describe the interaction/scattering

with the lattice.

- At the switch from positive to negative curvature/mass => zero curvature =

infinite mass

- These affect how the acceleration under E-field is affected, i.e., F=ma, 

becomes deceleration

- Flat bands (or small bandwidth) => high effective mass. Localized electrons 

more difficult to move than delocalized ones (remember KCl from in-class

exercise).
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- Properties given with respect to filled electron band

- v and m can be determined from energy and k
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- dk/(4pi^3) gives the number of electronic states within dk and accounting for 

spin.

- [Integration of dk/(8pi^3) over Brillouin zone yields 1/(primitive cell volume).]
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- From time-reversal symmetry T psi(t) = psi^*(-t) => T psi_k = psi_-k

- Metals vs semiconductors

- Valence vs core electrons
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- All electrons in a partially filled band move in k-space concurrently (left), the 

hole as well

- Last form can be thought of as integral over missing electrons or integral

over holes (positive charge, opposive wave vector)

- Due to opposite wave-vector it moves in real-space in same direction as 

electric field (as expected of positively charged particle)
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- Free electron model => spherical Fermi-surface

- Also from Drude model, eqn. (6.7,6.8), p = m*v = -e*tau*E = hbar*k, where

tau is average time between collisions
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- Scattering only possible to unoccupied states
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- Wave packet broadens even if the momentum distribution remains the

same.

15



- Rate of change in state occupation as a sum over probabilities to all final 

states k’ => lifetime of state k

- Like Fermi’s golden rule…

- Psi(t) = sum_k c_k(t) psi_k, nothing happens if we have just the unperturbed

Hamiltonian (with eigenstates psi_k)

- Using time-dependent perturbation: c_k’(t) ~ sum_k w_k’k c_k(t), i.e., w 

corresponds to shift in amplitude
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- Annihilated phonon (left), created phonon (right)
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- I.e., exponent needs to be equal to G

- As shown in Elliott: H’ ~ u.q, thus only longitudinal phonons couple to 

electrons

- Drawing D3.2 for understanding the dipolar potential perturbation and how

electron feels it in transverse vs. longitudinal cases.
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- Two Brillouin zones showing Fermi-surfaces

- A->B umklapp, C->D normal

- Everything happening close to Fermi-surface: occupied vs empty states, at 

low T small wave vector (and energy) of (acoustic) phonons. Room temp: 

kT about 26 meV

- See the example band structures and phonon dispersion of aluminum
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- Also called ”crystal momentum”

- Consider momentum in free-electron model in extended vs folded zone

schemes: exp(ik.r) vs exp(i((k+G)-G).r)=exp(ik’.r)*exp(-iG.r)=exp(ik’.r)*u(r)

- Momentum conservation arises when Lagrangian is invariant under

translation symmetry (continuous space). Also holds for (expectation value

of) momentum in QM. And transforms to conservation of k when we

consider simple wave packets.

- Here translation symmetry is discrete, constrained to lattice points.
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- Illustrate potential well for electrons arising from Coulomb potentials of the

nuclei…

- In infinite system we can still have nonzero momentum, since there are no 

boundaries, I think.

- Phonons solved from potential energy, no kinetic energy was considered.
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- High number of phonons per mode affects the amplitude and thus the 

scattering probability
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- Only (E2-EF)/EF fraction of electrons 2 can scatter with electron 1

- Volume of spherical shell vs volume of sphere ~3(E1-EF)/EF. Alternatively

consider some DOS profile, if flat then g*(E1-EF)/(g*EF). Or a fraction (k_1-

k_F)/k_F

- States 3 and 4 should be empty states, but quasimomentum conservation

forces them close to Fermi-surface
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