

Fundamentals of HVAC Design EEN-E4004

Lecture 6.3.2019

Task 1: Heat loss calculations

M.Sc Vikke Niskanen

Task 1: Heat loss calculations

Targets

- Recognize what characterics of buildings affect heating powers and heat losses
- Have knowledge how to calculate heat losses and heating powers

Methods

Calculate heat losses and heating powers using RakMK D5: file:///C:/Users/VNi/Downloads/D5-17-5-2013-final-su.pdf

Outcome

Make and document calculations of heat losses for the example building in the tasks for each room

RakMK D5: part 9

9

LÄMMITYSTEHO Heating power

Tässä luvussa lasketaan

- 9.1 Rakennuksen lämmitystehon tarve
- 9.2 Rakennusvaipan johtumislämpöhäviöteho Heating power through conduction
- 9.3 Vuotoilman lämpenemisen lämpötehon tarve Heating power through leakage air
- 9.4 Tilassa tapahtuvan tuloilman lämpenemisen lämpötehon tarve
- 9.5 Korvausilman lämpenemisen lämpötehon tarve
- 9.6 Ilmanvaihtokoneen lämmityspatterin teho
- 9.7 Käyttöveden lämmityksen lämpötehon tarve

Laskelmien lähtötietoina tarvitaan vähintään

Rakennusosien pinta-alat Areas of building blocks

Rakennusosien lämmönläpäisykertoimet Heat transfer coefficients

Rakennuksen ilmatilavuus Air volume of building

Ilmanvaihdon ilmavirrat

Ilmanvaihdon lämmöntalteenoton lämpötilasuhteet mitoitustilanteessa

Lämpimän käyttöveden mitoitusvirtaama

Lämmitysjärjestelmien hyötysuhteet

Heating power through conduction

9.2 Rakennusvaipan johtumislämpöhäviöteho Heating power through conduction

9.2.1

Rakennusvaipan johtumislämpöhäviöteho lasketaan kaavalla (9.3)

$$\phi_{joht} = \phi_{ulkosein\ddot{a}} + \phi_{vl\ddot{a}pohja} + \phi_{alapohja} + \phi_{ikkuna} + \phi_{ovi} + \phi_{muu} + \phi_{kvlm\ddot{a}sillat}$$

$$(9.3)$$

jossa

φ_{joht} johtumislämpöteho rakennusvaipan läpi, W **Total heating power through conduction**

φ_{ulkoseinä} johtumislämpöteho ulkoseinien läpi, W walls

φ_{yläpohja} johtumislämpöteho yläpohjien läpi, W roof

φ_{alapohja} johtumislämpöteho alapohjien läpi, W floor

φ_{ikkuna} johtumislämpöteho ikkunoiden läpi, W windows

 ϕ_{ovi} johtumislämpöteho ulko-ovien läpi, W doors

φ_{muu} johtumislämpöteho tilaan, jonka lämpötila poikkeaa ulkolämpötilasta, W

φ_{kylmäsillat} johtumislämpöteho kylmäsiltojen läpi, W. **Cold bridges**

Lämpöhäviötehot rakennusosien läpi lasketaan jokaiselle rakennusosalle i kaavalla (9.4) ja lämpöhäviötehot kylmäsiltojen läpi lasketaan kaavalla (9.5)

Heating power through conduction

$$\phi_i = \sum U_i \ A_i \left(T_s - T_{u,mit} \right) \tag{9.4}$$

$$\phi_{kylm\ddot{a}sillat} = \sum_{k} l_k \Psi_k \left(T_s - T_{u,mit} \right) \tag{9.5}$$

joissa

 $φ_i$ johtumislämpöteho rakennusosan i läpi, W Heating power through conduction johtumislämpöteho kylmäsiltojen läpi, W Heating power through cold bridges rakennusosan i lämmönläpäisykerroin, W/(m² K) Heat transfer coeffiecient rakennusosan i pinta-ala, m² area sisäilman lämpötila, °C Temperature indoors = 21 C mitoittava ulkoilman lämpötila, °C Temperature ourdoors = -26 C viivamaisen kylmäsillan pituus, m viivamaisen kylmäsillan lisäkonduktanssi, W/(m K).

Heating power through leakage air

9.3 Vuotoilman lämpenemisen lämpötehon tarve

9.3.1

Vuotoilman lämpenemisen lämpötehon tarve lasketaan kaavalla (9.6)

$$\phi_{vuotoilma} = \rho_i c_{pi} q_{v, vuotoilma} \left(T_s - T_{u,mit} \right)$$
(9.6)

jossa

 $\phi_{\text{vuotoilma}}$ vuotoilman lämpenemisen lämpötehon tarve, W Total power for leakage air

 ρ_i ilman tiheys, 1,2 kg/m³ Air density

c_{pi} ilman ominaislämpökapasiteetti, 1000 J/(kg K) Specific heat capacity for air

q_{v, vuotoilma} vuotoilmavirta, m³/s Leakage air flow

T_s sisäilman lämpötila, °C **Temperature indoors = 21 C**

T_{u, mit} mitoittava ulkoilman lämpötila, °C. **Temperature ourdoors = -26 C**

Calculating leakage air

3.3.2

Vuotoilmavirta lasketaan kaavalla (3.9)

$$q_{v,vuotoilma} = \frac{q_{50}}{3600 \cdot x} A_{vaippa}$$
(3.9)

jossa

q_{v, vuotoilma} vuotoilmavirta, m³/s leakage air volume

rakennusvaipan ilmanvuotoluku, $m^3/(h m^2)$ Air leakage coefficient = 4 m3/hm2 rakennusvaipan pinta-ala (alapohja mukaan luettuna), m^2 Area of building mantle

x kerroin, joka on yksikerroksisille rakennuksille 35, kaksikerroksisille 24, kolmi- ja neli-

Coefficient forkerroksisille 20 ja viisikerroksisille ja sitä korkeimmille rakennuksille 15 kerroskorkeuden

stories = 35 ollessa noin 3 m, -. Vain maapinnan yläpuoliset kerrokset otetaan huomioon.

kerroin, joka muuttaa ilmavirran m³/h yksiköstä m³/s yksikköön.

Rakennusvaipan ilmanvuotolukuna q₅₀ voidaan käyttää lämmitysenergian tarpeen laskennassa arvoa 4 m³/(h·m²), ellei ilmanpitävyyttä tunneta. Taulukossa 3.5 esitetään tyypillisiä ilmanvuotoluvun arvoja eri rakennuksille.

walls

Documenting task 1

Heat loss calculation -excel is returned for the task.

- > The excel sheet is a rough model, one can "tweak" the document if necessary
- ➤ The task is scaled in points on a scale from 0 ... 10, total of 10% of the course grade

Lets go through the excel and other model drawings!

