
ELEC-E8111: Autonomous mobile robots

Introduction to ROS for robot project

Mika Vainio
Arto Visala

(Andrei Sandru)

ROS (Robot Operating System) is an open-source, meta-
operating system for your robot. It provides the services you
would expect from an operating system, including hardware
abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between
processes, and package management. It also provides tools
and libraries for obtaining, building, writing, and running code
across multiple computers.

SORCE: http://wiki.ros.org/ROS/Introduction

ROS?

Distributed computation
Many modern robot systems rely on software that spans many different processes

and runs across several different computers:

• Some robots carry multiple computers, each of which controls a

subset of the robot’s sensors or actuators.

• Even within a single computer, it’s often a good idea to divide the

robot’s software into small, stand-alone parts that cooperate to

achieve the overall goal.

• When multiple robots attempt to cooperate on a shared task, they

often need to communicate with one another to coordinate their

efforts.

• Human users often send commands to a robot from a laptop, a

desktop computer, or mobile device. We can think of this human

interface as an extension of the robot’s software.

SORCE: https://www.cse.sc.edu/~jokane/agitr/

Software reuse
The rapid progress of robotics research has resulted in a growing collection of good

algorithms for common tasks such as navigation, motion planning, mapping, and

many others. The existence of these algorithms is only truly useful if there is a way to

apply them in new contexts, without the need to reimplement each algorithm for each

new system.

ROS can help in at least two important ways:

1) ROS’s standard packages provide stable, debugged implementations

of many important robotics algorithms.

2) ROS’s message passing interface is becoming a de facto standard for

robot software interoperability, which means that ROS interfaces to both

the latest hardware and to implementations of cutting edge algorithms

are quite often available. For example, the ROS website lists hundreds

of publicly-available ROS packages. This sort of uniform interface greatly

reduces the need to write “glue” code to connect existing parts.

SORCE: https://www.cse.sc.edu/~jokane/agitr/

Rapid testing
One of the reasons that software development for robots is often more challenging than
other kinds of development is that testing can be time consuming and error-prone.
Physical robots may not always be available to work with, and when they are, the process
is sometimes slow and finicky. Working with ROS provides two effective workarounds to
this problem:

1) Well-designed ROS systems separate the low-level direct control of the

hardware and high-level processing and decision making into separate

programs. Because of this separation, we can temporarily replace those low-

level programs (and their corresponding hardware) with a simulator, to test the

behavior of the high-level part of the system.

2) ROS also provides a simple way to record and play back sensor data and

other kinds of messages. By recording the robot’s sensor data, we can replay it

many times to test different ways of processing that same data. In ROS, these

recordings are called “bags” and a tool called rosbag is used to record and

replay them.

SORCE: https://www.cse.sc.edu/~jokane/agitr/

A Gentle Introduction to ROS

Jason M. O'Kane

This book supplements ROS's own

documentation, explaining how to

interact with existing ROS systems and

how to create new ROS programs using

C++, with special attention to common

mistakes and misunderstandings. The

intended audience includes new and

potential ROS users.

166 pages

ISBN 978-14-92143-23-9

Printed copies are available from

Amazon.com

Electronic copies are free and available from the author’s website:

https://www.cse.sc.edu/~jokane/agitr/

http://www.amazon.com/Gentle-Introduction-ROS-Jason-OKane/dp/1492143235

Contents

⚫ Overview

⚫ ROS Components

⚫ How ROS communication works

⚫ ROS Tools

⚫ Helpful to know

⚫ Examples and Demonstrations

Overview: What is ROS? ...

⚫ Robot Operating System

− A “meta” operating system for robots

− A collection

⚫ Packaging (over 3000 packages!)

⚫ Software building and data analysis tools

− Distributed Communication architecture (inter-
process / inter-machine)

− Language independent architecture

− Constantly increasing community

Overview: What is ROS?

App App App

App AppROS

Operating System Ubuntu/Windows/Mac

HARDWARE

IPC

Who made it ?

⚫ ROS released in

January 2010

⚫ Privately owned

company

⚫ Based in Menlo

Park, California

⚫ Strong open source

commitment

⚫ Shut down in 2014

Image taken from https://www.willowgarage.com/

Various efforts at

Stanford University in

the mid-2000s involving

integrative, embodied

AI, such as the

STanford AI Robot

(STAIR) and the

Personal Robots (PR)

program, created in-

house prototypes of

flexible, dynamic

software systems

intended for robotics

use.

Open Source Robotics

Foundation, Inc

At Open Robotics, we

work with industry,

academia, and

government to create and

support open software

and hardware for use in

robotics, from research

and education to product

development.

ROS Distribution Releases

All ros logos taken from http://wiki.ros.org

ROS

Melodic

Morenia

What does ROS get you ?

Applications

Capabilities

Libraries

Main

tf, OpenCV, PCL, KDL,
Hardware drivers

Grasping, control,
execution, navigation ...

Finding and fetching
action figures

ROS

Packaging & building tools,
Communication infrastructure
ROS API language binding tools

What does ROS get you ?

Applications

Capabilities

Libraries

Main

tf, OpenCV, PCL, KDL,
Hardware drivers

Grasping, control,
execution, navigation ...

Finding and fetching
action figures

ROS

Packaging & building tools,
Communication infrastructure
ROS API language binding tools

What does ROS get you ?

Applications

Capabilities

Libraries

Main

tf, OpenCV, PCL, KDL,
Hardware drivers

Grasping, control,
execution, navigation ...

Finding and fetching
action figures

ROS

Packaging & building tools,
Communication infrastructure
ROS API language binding tools

What does ROS get you ?

Applications

Capabilities

Libraries

Main

tf, OpenCV, PCL, KDL,
Hardware drivers

Grasping, control,
execution, navigation ...

Finding and fetching
action figures

ROS

Packaging & building tools,
Communication infrastructure
ROS API language binding tools

ROS Components
⚫ Computational Graph

− Master

⚫ The ROS Master provides naming and registration services to the rest of the nodes.

− Nodes

⚫ A node is a process that performs computation.

− Parameter Server

⚫ A parameter server is a shared, multi-variate dictionary that is accessible via network APIs.

− Message

⚫ Nodes communicate with each other by publishing messages to topics.

− Topic

⚫ Topics are named buses over which nodes exchange messages.

− Services

⚫ Request / reply blocking call.

− Bags

⚫ A bag is a file format in ROS for storing ROS message data.

ROS Components

⚫ File System

− <root file system>

⚫ /opt/ros/<distro>/

− bin

− include

− lib

− share

− etc...

− <workspace>

⚫ build

− Contains make and cmake generated files

⚫ devel

− Contains same directory structure as root file system

⚫ src

− <projects source and configurations> ...

ROS Components

⚫ Packages in workspace

src/

CMakeLists.txt -- The “toplevel” CMake file

package_1/ -- Package containing source code

CMakeLists.txt -- For CMake: Describes how to build the code and where
-- to install it.

package.xml -- Package description, including dependencies

…

package_2/

CMakeLists.txt

package.xml

…

…

How ROS communication works

− Entities and terminology

− Communication models

⚫ Publisher/Subscriber model (Synchronous)

⚫ Service/Client model (Asynchronous)

− Pioneer 3DX case Example

Master Name Service Example

For instance, let's say we have two

Nodes; a Camera node and an

Image_viewer node. A typical

sequence of events would start with

Camera notifying the master that it

wants to publish images on the topic

"images":

Now, Camera publishes

images to the "images"

topic, but nobody is

subscribing to that topic yet

so no data is actually sent.

Now, Image_viewer wants

to subscribe to the topic

"images" to see if there's

maybe some images there:

Now that the topic

"images" has both a

publisher and a

subscriber, the master

node notifies Camera

and Image_viewer about

each others existence so

that they can start

transferring images to

one another:

Camera Node Image Viewer

ROS
Node

ROS
Node

ROS communications: entities

Topic: /Images

ROS
Node

Image Viewer 2

ROS Communication

ROS
Node

ROS
Node

Synchronous

Asynchronous

ClientServer Request

Response

Publisher SubscriberTopic

Pioneer 3DX case example

Adept
MobileRobots was
the manufacturer
of Pioneer. It was
formerly known as
ActivMedia
Robotics and
MobileRobots Inc.
It was active from
the mid 1990s
until 2018.

Asus Xtion camera (RGB+D)2D Sick Laser scanner

Pioneer 3DX case example

Laser

Xtion
Depth

Xtion
RGB

ROS ARIA

Ultra Sonic

Cmd
velocity

Odom

PTU

Manipulator

ROS Core

/Image
/PointCloud2

/scan

/ptu_angles

/ptu_states

/manip_angles

/manip_states

/cmd_vel

/odom

/scan

Your
apps

Pioneer 3DX

ROS Tools

⚫ roscore

⚫ roscd

⚫ rosmsg

⚫ rostopic

⚫ rosservice

⚫ roswtf

⚫ rosrun

⚫ roslaunch

⚫ rviz

⚫ rosed

⚫ rosparam

⚫ rqt_logger_level

⚫ rqt_console

⚫ rqt_graph

⚫ catkin_create_pkg

⚫ catkin_make

rostopic
The rostopic command-line tool displays information about ROS topics. Currently, it can

display a list of active topics, the publishers and subscribers of a specific topic, the

publishing rate of a topic, the bandwidth of a topic, and messages published to a topic.

The display of messages is configurable to output in a plotting-friendly format.

This is the current list of supported commands:

rostopic bw display bandwidth used by topic

rostopic delay display delay for topic which has header

rostopic echo print messages to screen

rostopic find find topics by type

rostopic hz display publishing rate of topic

rostopic info print information about active topic

rostopic list print information about active topics

rostopic pub publish data to topic

rostopic type print topic type

roswtf

roswtf is a tool for diagnosing issues with a
running ROS system. Think of it as a FAQ
implemented in code.

roswtf looks for many, many things, and the list is always growing. There are

two categories of what it looks for: file-system issues and online/graph issues.

For file-system issues, roswtf looks at your environment variables, package

configurations, stack configurations, and more. It can also take in a roslaunch

file and attempt to find any potential configuration issues in it, such as packages

that haven't been built properly.

For online issues, roswtf examines the state of your current graph and tries to

find any potential issues. These issues might be unresponsive nodes, missing

connections between nodes, or potential machine-configuration issues with

roslaunch.

rviz

rviz is 3D visualizer for displaying sensor data and state information from ROS.
Using rviz, you can visualize your robot’s current configuration on a virtual model of
the robot. You can also display live representations of sensor values coming over ROS
Topics including camera data, infrared distance measurements, sonar data, and more.

http://wiki.ros.org/rviz/

rqt_console
Provides a GUI plugin for displaying and filtering

ROS messages.

rgt_graph

rqt_graph provides a GUI plugin for visualizing the ROS
computation graph. It visualizes the publish subscribe
relationships between ROS nodes

Helpful to know

− ROS On Distributed Machines

− Importance of TF Library

− ROS Launch files

− Gazebo

ROS On Distributed Machines

robot_IP = 192.168.1.110
ROS_MASTER_URI = 192.168.1.110
ROS_IP = 192.168.1.110

Computer_IP = 192.168.1.116
ROS_MASTER_URI = 192.168.1.110
ROS_IP = 192.168.1.116

Mobile Robot Teleop Computer

Importance of ros TF library

⚫ TF

− Transformation Frames

− Must be connected to a global reference

⚫ /map or /world frames link with /odom ...

ROS Launch files

⚫ Specify launch sequence

⚫ Load required parameters and arguments

⚫ Automatically launch rosmaster i.e. roscore (if it is not already running)

⚫ Sample.xml

<launch>

<node ns="namespace" name="kinect_aux" pkg="kinect_aux"
type="kinect_aux_node"/>

<node ns="namespace" name="ros_serial" pkg="rosserial_python"
type="serial_node.py" args="/dev/ttyUSB0"/>

<node ns="namespace" name="kinect_ptu_node" pkg="kinect_ptu"
type="kinect_ptu_node"/>

</launch>

GAZEBO (1/2)
gazebo_ros_pkgs is a set of ROS packages that provide
the necessary interfaces to simulate a robot in the
Gazebo 3D rigid body simulator for robots. It integrates
with ROS using ROS messages, services and dynamic
reconfigure.

http://gazebosim.org/

Why Gazebo?

Robot simulation is an essential tool

in every roboticist's toolbox. A well-

designed simulator makes it

possible to rapidly test algorithms,

design robots, perform regression

testing, and train AI system using

realistic scenarios. Gazebo offers

the ability to accurately and

efficiently simulate populations of

robots in complex indoor and

outdoor environments. At your

fingertips is a robust physics

engine, high-quality graphics, and

convenient programmatic and

graphical interfaces. Best of all,

Gazebo is free with a vibrant

community.

GAZEBO (2/2)

Important links

⚫ ROS home

− http://www.ros.org

⚫ ROS Indigo Installation

− http://wiki.ros.org/indigo/Installat
ion/Ubuntu

⚫ ROS tutorials

− http://wiki.ros.org/ROS/Tutorials

⚫ Transformation frames library

− http://wiki.ros.org/tf/Tutorials

⚫ Gazebo

− http://gazebosim.org/

⚫ SLAM

− http://wiki.ros.org/gmapping

⚫ ROS OpenCV

− http://wiki.ros.org/vision_opencv

⚫ ROS PCL

− http://wiki.ros.org/pcl

⚫ ROS Navigation

− http://wiki.ros.org/navigation

⚫ ROSARIA

− http://wiki.ros.org/ROSARIA

⚫ URDF

− http://wiki.ros.org/urdf/Tutorials

http://www.ros.org/
http://wiki.ros.org/hydro/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/stage/Tutorials
http://wiki.ros.org/gmapping
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/pcl
http://wiki.ros.org/navigation
http://wiki.ros.org/ROSARIA
http://wiki.ros.org/urdf/Tutorials

Pioneer 3DX PROJECT WORK

Asus Xtion camera (RGB+D)

2D Sick Laser scanner

Pioneer 3DX

Laser

Xtion
Depth

Xtion
RGB

ROS ARIA

Ultra Sonic

Cmd
velocity

Odom

PTU

Manipulator

ROS Core

/Image
/PointCloud2

/scan

/ptu_angles

/ptu_states

/manip_angles

/manip_states

/cmd_vel

/odom

/scan

Your
apps

Pioneer 3DX

Testing algorithms under ROS on
Pioneer robot platform

1) Explore and map with SLAM an unknown area

• Easiest on the basis of Sick -laser scanner, but you can use
Kinect as well.

• While mapping you can control the motion of the robot by
manual controls

• Occupancy grid map is suitable for this case

• As base node Gmapping is used

2) Plan the collision free path of the robot from the current
pose to the given pose using some of the algorithms of
path planning.

• You should to use configuration space for path planning.

• As base planning node the ROS navigation stack is used.

3) Implement and test motion control with ROS.

4) Document the experiments and show the final
operation of the robot.

You can get extra points by demonstrating other
different SLAM and/or path planner algorithms.

Testing algorithms under ROS on
Pioneer robot platform

Robot

• Pioneer P3-DX

• Motor controller, differential drive

• Encoders to calculate odometry

• 2D Sick Laser scanner

• Asus Xtion camera (Kinect type RGB+D)

– Provides depth information

• Controlled by using ROS (Robot Operating
System)

Practical Issues
• Robot situates in room 2552

• Reserve always time for your team in
MyCourses

• First session two hours, extra time slots can be
reserved.

• Power and recharging

– Always keep the robot connected to the charger
when possible

Timetable

Testing algorithms under ROS/Pioneer starts on
March 18th

Design of a case robot system, DL Sunday April
14th, 21:00

Testing algorithms under ROS on Pioneer robot
platform, DL for reports Sunday April 14th, 21:00

Important

• You are dealing with real, complicated mechanical
device that can break. Please respect that!

– If something happens, please contact staff immediately

• Some important things:

– If you don't know how to do something – ask

– If you don't understand the answer - ask again

– DO NOT BREAK THE ROBOT

During the experiments, Mika can be reach:

Room: 2568 | Tel: 0505052156 | Email: mika.vainio@aalto.fi

FOR THIS AND NEXT WEEK:

Form your group (4-5 members)

Visit ros.org and go through some tutorials

Check out https://www.cse.sc.edu/~jokane/agitr/

From Friday 8th onwards book you time-slot with
the robot

https://www.cse.sc.edu/~jokane/agitr/

