
Additive Gaussian processes

• Mix multiple GP’s with different covariates / kernels


• Duvenaud et al. Additive Gaussian processes, 2011


• Duvenaud et al. Structure discovery in nonparametric 
regressio through compositional kernel search, 2013 

Central Dogma

Central modeling assumption:
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We hope our high-dimensional function can be written as a sum of
orthogonal low-dimensional functions.

it’s far easier to learn ten 1-dimensional functions than one
10-dimensional function!



Bayesian optimisation with GPs

• Shahriari et al: Taking the human out of the loop: A review 
of bayesian optimization, 2016



Bayesian quadrature

• Numerically approximate an integral using GP proxies


• Many references



Relationship between 
neural networks and GPs

• A neural network of infinite width converges (statistically) 
to a GP


• Williams: Computationa with infinite neural networks, 
1998


• Matthews et al. Gaussian process behavior in wide deep 
neural networks, 2018



Multi-output GPs & Kronecker structures

• Bonilla et al. Multi-task Gaussian process prediction, 
2006


• Stegle et al. Efficient inference in matrix-variate Gaussian 
models with iid observation noise



Gaussian processes for big data 

• Scaling GPs to million/billion points


• Hensman et al: Scalable Variational Gaussian process 
Classification, 2015


• Wilson et al: Kernel Interpolation for Scalable Structured 
Gaussian Processes (KISS-GP), 2015



GPs with monotonicity

• Riihimäki et al. Gaussian processes with monotonicity 
information, 2011
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Gaussian processes with monotonicity information
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Figure 1: Example of Gaussian process solution (mean + 95% interval) without monotonicity information (a),
and the corresponding derivative of the latent function (d). Subfigures (b) and (c) illustrate the solutions with
monotonicity information, and the corresponding derivatives are shown in (e) and (f). The virtual derivative
observations (shown with short vertical lines) in (b) are placed on locations where the probability of derivative
being negative is large (seen in Subfigure (d)). In Subfigure (c) the derivative points are placed on a grid.
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Figure 2: Contour plot of the log marginal likelihood without monotonicity information (a), and the corre-
sponding solutions (b) and (c) at the modes. Subfigure (d) shows contour plot of the marginal likelihood with
monotonicity information, and Subfigures (e) and (f) illustrate the corresponding solutions at the modes. The
locations of virtual observations are shown with short vertical lines in Subfigures (e) and (f).



GP latent variable models (GPLVMs)

• Titsias et al. Bayesian Gaussian process latent variable 
model, 2010
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Figure 3: The digit images visualised in the 2-D latent space. We followed [5] in plotting images in
a random order but not plotting any image which would overlap an existing image. 538 of the 3000
digits are plotted. Note how little space is taken by the ‘ones’ (the thin line running from (-4, -1.5) to
(-1, 0)) in our visualisation, this may be contrasted with the visualisation of a similar data-set in [5].
We suggest this is because ‘ones’ are easier to model and therefore do not require a large region in
latent space.

shef.ac.uk/~neil/gplvm/ along with avi video files of the 1-D visualisation and
results from two further experiments on the same data (a 1-D GPLVM model of the digits
and a 2-D GPLVM model of the faces).

3 Discussion

Empirically the RBF based GPLVM model gives useful visualisations of a range of data-
sets. Strengths of the method include the ability to optimise the kernel parameters and to
generate fantasy data from any point in latent space. Through the use of a probabilistic
process we can obtain error bars on the position of the manifolds which can be visualised
by imposing a greyscale image upon the latent space.

When Kernels Collide: Twin Kernel PCA The eigenvalue problem which provides the
maxima of (2) with respect to for the linear kernel is exploited in kernel PCA. One could
consider a ‘twin kernel’ PCA where both T and T are replaced by kernel
functions. Twin kernel PCA could no longer be undertaken with an eigenvalue decompo-
sition but Algorithm 1 would still be a suitable mechanism with which to determine the
values of and the parameters of ’s kernel.



Convolutional GP

• Van der wilk et al: Convolutional Gaussian process, 2017

Figure 1: A three layer deep convolutional gaussian process. First we construct an intermediate probabilistic representation of
sizeW1⇥H1⇥C1. We map this probabilistic representation through another convolutional GP layer yielding a representation
of sizeW2⇥H2⇥C2. Finally, we classify using a GP with a convolutional kernel by summing over patches of the intermediate
representation.

3.1 Convolutional GP layers
We assume an image representation f `

c
2 RH`⇥W` of width

W` and height H` pixels at layer `. We collect C` channels
into a 3D tensor f ` = (f `1 , . . . , f

`

C
) 2 RH`⇥W`⇥C` , where the

channels are along the depth axis. �e input image f0 = x is
theW0 ⇥H0 ⇥C0 sized representation of the original image
with C color channels. For instance MNIST images are of
sizeW = H = 28 pixels and have a single C = 1 grayscale
channel.

We decompose the 3D tensor f ` into patches f `[p] 2
Rw`⇥h`⇥C` containing all depth channel. h` and w` are the
height and width of the image patch at layer `. We index
patches by p 2 Z < H`W`. H` and W` denotes the height
and width of the output of layer `. We compose a sequence
of layers f ` that map the input image xi to the label yi:

xi = f0| {z }
W0⇥H0⇥3

g
1

�! f1|{z}
W1⇥H1⇥C1

· · · g
L

��! fL|{z}
Cy

⇡ yi|{z}
{0,1}Cy

(10)

Layers f ` with ` � 1 are random variables with probability
densities p(f `).

We construct the layers by applying convolutions of patch
response functions g`

c
: Rw`�1⇥h`�1⇥C`�1 ! R over the

input one patch at a time producing the next layer represen-
tation:

f `[p] =

2

64
g`1(f

`�1[p])
...

g`
C
(f `�1[p])

3

75 2 RC (11)

Each individual patch response g`(f `�1[p]) is a 1 ⇥ 1 ⇥ C
pixel stack. By repeating the patch responses over theP`�1 =

H`⇥W` patches we form a newW`⇥H`⇥C` representation
f ` = (f `[1], . . . , f `[P`�1]) (See Figure 1).

We model the C patch responses at each of the �rst L� 1
layers as independent GPs with shared prior

g`
c
(f `�1[p]) ⇠ GP

�
0, k(f `�1[p], f 0`�1[p0])

�
(12)

for c = 1, . . . , C . �e kernel k(·, ·) measures the similarity
of two image patches. �e standard property of Gaussian pro-
cesses implies that the functions g`

c
output similar responses

for similar patches.
For example, onMNISTwhere images have size 28⇥28⇥1

using patches of size 5 ⇥ 5 ⇥ 1, a stride of 1 and C = 10
patch response functions, we obtain a representation of size
24 ⇥ 24 ⇥ 10 a�er the �rst layer (height and width W1 =
H1 = (28 � 5)/1 + 1). �is is passed on to the next layer
which produces an output of size 20⇥ 20⇥ 10.

We follow the sparse GP approach of Hensman et al.
(2015a) and augment each patch response function by a set of
M inducing patches z` in the patch space Rh`�1⇥w`�1⇥C`�1

with corresponding responses u`

c
. Each layer contains M` in-

ducing patches Z` = (z`1, . . . , z
`

M
) which are shared among

the C patch response functions within that layer. Each patch
response function has separate inducing responses u`

c
=

(u`

c1, . . . , u
`

cM
) which associate outputs to each inducing

patch. We collect these into a matrixU`.
�e conditional patch responses are

g`
c
|f `�1,u`

c
,Z` ⇠ N (µ,⌃) (13)

µ = Kf`�1Z`K�1
Z`Z`u

`

c

⌃ = Kf`�1f`�1 �Kf`�1Z`K�1
Z`Z`KZ`f`�1 ,

where the covariance between the input and the inducing

3



Deep GPs

• Damianou et al. Deep Gaussian processes, 2011


• Salimbeni et al. Doubly stochastic Deep Gaussian 
processes, 2017

Figure 2: (a) Illustration of samples from a 2D deep Gaussian processes prior. DGP prior exhibits a pathology
wherein representations in deeper layers concentrate on low-rank manifolds. (b) Samples from a differentially
deep Gaussian processes prior result in rank-preserving representations. (c) The continuous-time nature of the
warping trajectories results from smooth drift and structured diffusion (d).

field f and the predictor function g. A key parameter of
the differential GP model is the amount of simulation time T , which defines the length of flow and
the capacity of the system, analogously to the number of layers in standard deep GPs. The framework
reduces to a conventional Gaussian process with zero flow time T = 0.

We assume a dataset of N inputs X = (x1, . . . ,xN )T 2 RN⇥D of D-dimensional vectors xi 2 RD,
and associated scalar outputs y = (y1, . . . , yN )T 2 RN that can be continuous for a regression
problem or categorical for classification, respectively. We redefine the inputs as temporal functions
x : T ! RD over time such that state paths xt over time t 2 T = R+ emerge, where the observed
inputs xi,t , xi,0 correspond to initial states xi,0 at time 0. We classify or regress the final data
points XT = (x1,T , . . . ,xN,T )T after T time of an SDE flow with a predictor Gaussian process g.

In addition, we consider sparse Gaussian process approach by augmenting both differential and
predictor Gaussian process with inducing variables with GP prior [Snelson and Ghahramani, 2006,
Titsias, 2009]. The joint density of the augmented model is as below.

p(y,g,ug,XT , f ,Uf ) = p(y|g)| {z }
likelihood

p(g|ug,XT )p(ug)| {z }
GP prior of g(x)

p(XT |f)| {z }
SDE

p(f |Uf )p(Uf )| {z }
GP prior of f(x)

, (1)

p(g|ug,XT ) = N (g|Qgug,KXTXT �QgKZgZgQ
T
g ),

p(ug) = N (ug|0,KZgZg ), (2)

p(f |Uf ) = N (f |Qfvec(Uf ),Kxx �QfKZfZfQ
T
f ), (3)

p(Uf ) =
DY

d=1

N (ufd|0,KZfZf ), (4)

where Qg = KXTZgK
�1
ZgZg

and Qf = KXZfK
�1
ZfZf

. The model prediction depends on the
distribution of the final states p(XT |f) determined by the SDE flow dxt of the input data X. We
define the flow parameterized by inducing vectors Uf defining the vector field direction at ‘landmark’
locations Zf . The drift and diffusion at every point in the data space is then defined with smooth
non-linear Gaussian processes interpolation given by p(f |Uf ) in (3).

dxt = µ(xt)dt+
p
⌃(xt)dWt (5)

where, drift µ(xt) = KxtZfK
�1
ZfZf

Uf is a deterministic state evolution vector field, ⌃(xt) =

Kxtxt �KxtZfK
�1
ZfZf

KZfxt is the diffusion scaling matrix of the stochastic multivariate Wiener
process Wt 2 RD. A Wiener process has zero initial state W0 = 0, and independent, Gaussian
increments Wt+s �Wt ⇠ N (0, sID) over time with standard deviation

p
sID.
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