
Logging, metrics
and tracing
7.3.2019
Santeri Paavolainen

Why logging, metrics and tracing
relevant?
- In a simple (monolithic) system

- Single logging configuration, few metrics to monitor
- Single (or only a few) logging locations
- Persistent system à backups usually sufficient for retention

- Distributed (e.g. microservice) system
- Microservices composed of different subsystems and components
- Lifetime of a single instance, container etc. limited
- Huge variability in logging methods, metrics to collect * number of individual

collection points (instances/containers) large
- Distributed systems notoriously difficult to debug

- “No information” is a disaster
- Post-hoc often difficult to have information (instance gone!)

- A priori design is necessary!

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

2

Differences
Logging

- “What happened?”
- Development,

problem-solving,
auditing (audit logs)

- Logging levels
(typical)

- TRACE, DEBUG,
INFO, WARNING,
ERROR, FATAL

- Structured vs.
unstructured logs

- Tags

Metrics
- “What is state?”
- Instaneous, time

average, series
- Absolute vs.

relative
- Huge variability

- LB 2xx/3xx/4xx/5xx
- Method call time

- Tagged metrics
- Region, instance

type, code version,
service mode, …

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

3

Tracing
- “How these are

related?”
- Tag “initial request”

with a trace id
- Pass trace id to any

downstream requests
- Branches of new trace

ids linked to parent
- Trees
- Need to include

trace id in logging
(tags etc.)

Logging

Considerations: Logging

- What to log?
- Affects total volume
- Preferably run-time

configurable, minimally at
deployment

- How to log?
- Format, timestamps etc.
- Link to program code

- Security considerations
- Sensitive information
- Security of logs (authenticity)

- How to collect?
- To-disk and separate sender?
- Direct network?
- What protocol and format?

- Where to collect?
- Server / system / software

selection
- Overall infrastructure design

- What to collect?
- Retention time
- Tiered storage

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

5

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

6

Instance

Application Container

Application server

Application

Logging
Framework

Library

Library

Sidecar Container

Log
Forwarder

Log System

application logs

container logs

instance logs (dockerd, system, …)

querie
s

Long-term
retention

Dashboards

Logging

- Tons of logging frameworks, libraries and tools over all
languages

- Some languages have pretty standardized plug-in logging
mechanisms (some don’t)

- When using libraries etc. may end up with conflicts (Java …)
- What to choose, how to configure, how to use often reflect

programmer’s preferences à no universal rule to follow
- Some performance considerations too for high-performance

applications
- Overall these low-level concerns not really part of this course

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

7

Some numbers

- Assumptions
- 1 customer arrives / second
- 0.5 request / s / customer (average)
- 30 minutes / customer on site
- 30 log entries / request
- 100 B / log entry (a bit over a 80 character line)

- Result:
- 27 000 log entries / s
- 2.7 MiB / s
- 233 GiB / day

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

8

30 minutes low or high?

More or less log entries per
request?

How long retention? Does it compress well?

Maybe can compress
structured logs?

Metrics

Images: Elastic & NBSoftSolutions

https://www.elastic.co/guide/en/kibana/6.7/dashboard.html
https://nbsoftsolutions.com/blog/monitoring-windows-system-metrics-with-grafana

Metrics

- Values of some units
- 5xx over last minute
- # of active users
- CPU% usage now
- # of containers on instance
- $ sales over last minute

- Collectors usually don’t
store historical data

- Limited storage for time
averages

- Usually LOTS and LOTS and
LOTS of metrics

- Duplicity across systems, instances
and containers

- Some unique over whole system ($
sales)

- Visualization important
- Humans bad at interpreting raw

numbers, good at spotting visual
trends

- Hard numbers useful for alerting
- Alerting a whole another topic, not

going to that on this course (part of
operations)

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

11

So …
What to collect?

- OS, container, DB,
other apps usually
instrumented
themselves

- Highly dependent on
your problem

- Performance critical?
Business value? For
marketing?

- Generally: You will
be more sorry for
not collecting
enough metrics

- But they take time …

How to collect?
- Problematic
- Java has JMX

framework, other
languages usually
don’t à need
libraries to push,
per-framework
components

- How long to collect?
- Preferably keep

long-term at least in
aggregated form

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

12

How to process?
- Defining

meaningful
(=USEFUL!)
graphs &
dashboards takes
time

- Actually an UX
problem!

- Alerting … let’s
not go there

Tracing

Game of Guess Which Go Together
INFO [2019-02-02T15:11:19Z] c.a.b.y: Incoming request /foo user=null

INFO [2019-02-02T15:11:20Z] c.a.b.y: Incoming request /der user=fnord valid_until=2019-02-05T00:00:00 from=GB

ERROR [2019-02-02T15:11:20Z] c.a.b.r.a: Exception InvalidParameterResponse at ProcessFile.java:1223

WARN [2019-02-02T15:11:19Z] c.a.b.z: Invalid password for user=gabagaba

DEBUG [2019-02-02T15:11:22Z] c.a.b.o.y: d=0x555422231a a=null b=[gerbil,snaptree] action=get status=partial-success
remote=sp-54521.c.a.b.local

TIMEOUT cass12.cluster.local: write queue full, client not draining

INFO [2019-02-02T15:11:22Z] c.a.b.a9: received=ProcessEmail from=unknown to=anuser@example.com body=template-voucher-
offer retry=0

INFO [2019-02-02T15:11:23Z] c.a.b.a9: received=ProcessEmail from=unknown to=anuser@example.com body=template-voucher-
offer retry=0

INFO [2019-02-02T15:12:54Z] c.a.b.a9: received=ProcessEmail from=unknown to=anuser@example.com body=template-voucher-
offer retry=0

Error at @221125abf: Invalid allocation on request=0x66621a581

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

14

Distributed tracing

- Approaches
- Annotate log entries with trace identifiers (post-hoc analysis)
- Have separate tracing logic (focus on timings and dependencies)
- Not exclusive, can be used together (performance vs. debugging)

- Solutions
- AWS X-Ray, Datadog APM & Tracing, Google Stackdriver, …
- OpenTracing, Zipkin, Jaeger, OpenCensus, …

- Generally less understood and applied (wrt logging and
metrics)

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

15

Images: zipkin.io & AWS

https://zipkin.io/
https://cloudacademy.com/blog/aws-x-ray-distributed-tracing-system/

Summary

- Which one you prefer:
- System you KNOW is hosed?
- System which APPEARS to work?

- Logging, metrics and tracing are tools for the FIRST one
- Identifying the problem
- Locating the problem
- Understanding the problem
- After fix is rolled out, verifying that problem has gone away

4.3.2019
COM-EV Microservice architectures and serverless computing 2019

17

metrics
logging (tracing)

logging
all

