
Systems of multiple 
(micro)services
7.3.2019
Santeri Paavolainen



What we’ve covered already

- Microservices architecture
- Boundary, service definition, interfaces, SLA, …

- Distributed services
- Network communication models and protocols (somewhat)
- Load balancing, asynchronous processing patterns etc.

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

2



But think about all the plumbing?



Single pod, multiple containers

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

4



Independent components

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

5



Independent components

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

6

?
?

?

?

?
?



Service Discovery



Service discovery

- Idea: Map a name to an service address
- Questions

- Static or dynamic set of hosts?
- Continuous discovery or done only once?
- What kind of address? (IPv4, URL, queue name, …)
- What kind of name? (structured, unstructured, notation)
- Resiliency and fault-tolerance? (at client, during discovery, by 

service)
- Service injection, environment, hosts, DNS, discovery

services, directory services

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

8



Service injection

- Extremely static case of 
discovery

- Everything is known at
deployment

- IP addresses
- Number of nodes in cluster

- Methods
- Configuration templates
- Environmental variables

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

9













Recap: Service injection

- Very simple and straightforward
- Common tools:

- Fabric, Chef, Puppet, Terraform, AWS CloudFormation
- Just plain manual configuration also type of “service injection” 

(human doing the work)
- Problems

- Manual and dynamic changes (some tools work better than others)
- Failures have to be handled at application level (no automatic 

reconfiguration)

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

15

Not worth the hassle

(OTOH, most of the tools useful for 
infrastructure management, but not 
for service discovery unless static)



Environmental variables
- Docker Compose (obsoleted), Kubernetes (not recommended) etc. have 

this
- Remember docker run -e VAR=VALUE ?

- Almost like service injection
- Can change when service restarted (with rolling restarts starts resembling 

dynamic discovery)
- Docker Compose:

FE_1_PORT_80_TCP_ADDR=10.0.0.3
DB_MASTER_PORT_5432_TCP_ADDR=10.0.0.6

- Kubernetes:
DB_MASTER_SERVICE_HOST=10.0.0.6
DB_MASTER_SERVICE_PORT=5432

- Use these in configuration file (via environment) or command line

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

16

Avoid for discovery



Host-based discovery

- Idea: Distributed services over network 
è DNS built-in to almost everywhere è why not use it?

- Host-based discovery
- /etc/hosts (static = old, since dynamic mounts or rewriting)
- Local DNS resolver
- Cluster DNS
- Integrated service discovery service with DNS

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

17



Host-based discovery variants
- Static singular records

- fe_addresses = [fe-1, fe-2, 
fe-3]
lb_peer = lb-2

- Multiple records
- fe_addresses = fe

lb_peer = lb-2
- DNS

fe.local. IN A 10.0.0.3
fe.local. IN A 10.0.0.4
fe.local. IN A 10.0.0.5

- Either randomized ordering on 
DNS response or client-side 
support for multiple records

- Search domain (often .local)
- Can have structure too
- svc.ns.svc.cluster.local

(Kubernetes)
- Cloud infrastructure

services use CNAME 
indirection

- RR load balancing at DNS 
level (see next page)

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

18



Example: CNAME forwarding to 
changing A records in AWS S3 (RR LB)
$ dig energysim.kooma.net
;energysim.kooma.net. IN A
energysim.kooma.net. 1340 IN CNAME energysim.kooma.net.s3-website-eu-west-1.amazonaws.com.
energysim.kooma.net.s3-website-eu-west-1.amazonaws.com. 12 IN CNAME s3-website-eu-west-1.amazonaws.com.
s3-website-eu-west-1.amazonaws.com. 2 IN A 54.231.134.140

$ dig energysim.kooma.net
;energysim.kooma.net. IN A
energysim.kooma.net. 1333 IN CNAME energysim.kooma.net.s3-website-eu-west-1.amazonaws.com.
energysim.kooma.net.s3-website-eu-west-1.amazonaws.com. 5 IN CNAME s3-website-eu-west-1.amazonaws.com.
s3-website-eu-west-1.amazonaws.com. 5 IN A 52.218.104.108

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

19



More on host-based discovery via DNS

- Single vs. multiple records vs. RR LB vs. intelligent DNS
- Plus region affinity, fallbacks etc. (can go really deep)

- Namespaces
- Split by organization or function?

- Split DNS
- Different names on internal and external (or more) sides

- service.local inside è IN A 1.2.3.4, 2.3.4.5, 3.4.5.6
service.local outside è IN CNAME external-lb…

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

20



Kubernetes: host-based nginx reverse 
proxy with 2 services
- nginx as reverse proxy

- / à “hello world” app
- /static/ à static file server

- Three services
- 2 x internal (no public IP) but visible to nginx
- 1 x external (public IP) to nginx
- Public à nginx à (hello world app | static)

- Name resolution
- kube-dns most likely… (may be CoreDNS too)

5.3.2019
COM-EV Microservice architectures and serverless computing 2019

21



More service discovery patterns

- Host-based via DNS easy to use
- Might require client-side understanding (multiple records)
- Difficult to generalize to other uses (queue names etc.)
- (Ports not so much a problem with private IPs and port remapping)

è Generalized directory services 
- etcd, ZooKeeper, Consul ...
- Requires client-side support: external configurator (sidecar?) or 

internal to application (integrate service client)
- Users have complete control over key and value semantics

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

22





Summary

- Name-based service discovery a practical requirement in 
microservice architectures

- Dynamic environment
- Host-based resolution (DNS) very useful

- Usually built-in to many container orchestration environments 
(Kubernetes) à easy to use

- Can be adapted to more advanced use cases (RR IN A LB etc.)
- Sometimes generalized directory services needed

- DNS not a good match for non-host resolution (queue names etc.)





Failures



Overview

- Already established that in a distributed system
- Services may fail at any time
- Network may fail at any time
- Services may delay response arbitrarily
- Network may hang up arbitrarily
- Services may produce unexpected responses for any request
- (Client may fail at any time too, but let’s ignore that for now)

- What can we do about that?

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

27



Concepts

- “Blast radius”
- How large effect?

- Failure types
- Can we roughly categorize different failure types?

- Recovery vs. remediation (triage)
- Short-term vs. long-term responses

- Responses
- How to handle?

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

28



Blast radius
- “Blast radius”

- How large (spatial) and long 
(temporal) is the effect of a failure?

- Whole system (all clients, all 
requests)? Some % of system (clients 
and requests on a single server or 
container)? Single request (a client)?

- Failure types (roughly)
- Server dies (application server 

crashes, server crashes)
- Request fails (connection terminated, 

500 Server Error, incorrect response, 
corrupted response)

- Request hangs (response not 
completed)

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

29



Failure types
- Failure types (roughly)

- Server dies (application server 
crashes, server crashes)

- Request fails (connection terminated, 
500 Server Error, incorrect response, 
corrupted response)

- Request hangs (response not 
completed)

- May occur in combination
- Server dies à may look as a hang to 

client
- Server dies à may result in 500 from 

proxy or a connection termination
- Request hangs à eventual error 

response from timeout in proxy

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

30



Remediation and recovery

- Remediation
- Immediate response
- “What can be done now?”

- Recovery
- Long-term responses
- If this is not a transient

problem, can we reduce the
likelihood of that happening 
again?

- Automated responses vs. manual 
responses

- Remediation responses
- Ignore (e.g. propagate failure)
- Retry (transparently / at client)
- Do something other
- Remove server / container from

load balancer / cluster
- Recovery responses

- Wait
- Increase capacity (more replicas)
- Alert humans (manual 

intervention)
- Systemic fix (aka debug)

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

31



Replicas failing behind LB
- Stateful

- Persistent state à trouble
- Has to wait until restarted 
- Pray data is not corrupted
- Long recovery time

- Cached state à slowdown
- Recompute or retrieve cached state on 

rebalanced nodes
- Potential global service degradation

- Generally 1 / N effect
- 1 / 21 = ~5%
- Assumes random placement

- Health checks on nodes

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

32



Replicas behind failing LB

- Hidden assumption:
LBs are more reliable than 
services they are fronting

- What if not valid?
- 1 / N blast radius

- N = 2 not unheard of
- 50% worst case

- Cascading failures
- Remaining LBs must be able to 

handle increased traffic
- If N = 2 à 100% increase

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

33



Failing services

- The overall service may be 
up

- E.g. LB health checks pass (or 
no LB, and service used via 
RR IN A record set)

- Transient or client-specific 
failure à no rationale for 
heavy-handed global response

- May be limited to specific
APIs or parameters

- Timeouts or 5xx failures

- Remediation possibilities 
- Transparent retry
- Client-side retry
- Fallbacks
- Circuit breakers

- Recovery
- If transient, maybe just wait?
- If can trace to deployment,

maybe roll back?
- If CPU load, the cluster should 

be autoscaled anyway (so wait)

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

34



Transparent retry
- Incorporate retry logic at 

intermediary 
- LB, reverse proxy, etc.

- Most useful for transients
- Really only for idempotent requests

- GET or HEAD
- Timeouts

- N tries with timeout T for each, max 
N * T seconds (N = 3, T = 10 à 30
seconds before definite failure)

- Also useful for backoffs (429, 503)
- Does not help if clients aggressive

- RELOAD if >5s second page load

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

35



Client-side retry

- Return failures immediately to 
client

- Timeouts controlled by client
- Client decides what to do

- Retry?
- Use other service?
- Use cached value?
- Use cached value, but call 

asynchronously and update if 
successful?

- Report error?

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

36



Fallbacks
- Aspect of resilient computing

- Adaptive activities and responses 
based on environmental conditions

- Use cached or other data
- “Old value” often better than “no 

value”
- Broader data may be applicable too

- Per-user recommendations à general 
recommendations

- Finland feed à Europe aggregate feed
- Applicable for all

- Services using other services, 
transparent proxies and client-side 
logic

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

37



We can do better!



Circuit breakers (software fuses)

- Distributed system = many parties
- Share information about failures
- Clients can react to failing services before using them

- Circuit breaker
- Trip on failures
- Use fallback if tripped
- Some fuse reset policy

- Hystrix! (originating from Netflix, where else?)
- Circuit breaker design pattern

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

39



Source: Hystrix / Netflix



Summary
Failure Blast radius Remediation Recovery
Node dies All clients on the 

node
Load balance to 
another node

Reboot or launch 
new

Request fails Single request Retry
Fallback

(Debug)

Slow request 
processing

Single request Timeout!
Then retry or 
fallback

Increase 
processing 
capacity
(Debug)

Service failure Variable Circuit breaker Wait
Increase capacity

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

41



Finally …
- You can not hide all failures from 

clients
- If client is intelligent, it can often 

do something else
- Transparent retry? Eventually 

retries fail à use cached value –
what if no cached value? FE fails
during sending response? Etc. etc.

- “World is burning” scenario
- Trying desperately not to show 

“Unreachable site” page
- Fail page hosted elsewhere ready, 

redirect at DNS level

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

42



Summary of summaries

- Plumbing services together: Service Discovery
- Host name based
- Directory services (client-side support)

- What to do when plumbing leaks: Remediation and recovery
- Retries
- Fallbacks
- Circuit breakers

6.3.2019
COM-EV Microservice architectures and serverless computing 2019

43


