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Substances intended for use in the diagnosis, cure, mitigation, treatment 
or prevention of a disease.

Examples

• Aspirin
(acetylsalicylic acid)
Treatment of pain, 
fever and inflammation.

• Lovastatin
Lowers
cholesterol 
level.

• Everolimus
Treatment of cancer, including cancer of the 
kidney, pancreas, breast, and brain. Used 
together with other drugs to keep the body 
from rejecting a transplanted kidney or liver.



Drug targets
Ø Drug-like chemical compounds execute their actions

mainly by modulating cellular targets, including proteins,
metabolites or even nucleic acids (DNA and RNA).
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PROTEINS
Ø Most common drug targets.

Ø Large biomolecules.

Ø One of the most abundant molecules in living organisms.

Ø Perform a variety of important tasks, such as:
§ catalyzing chemical reactions (so called enzymes, e.g., kinases), 
§ transporting other molecules,
§ identifying and neutralizing foreign particles, 
§ providing structure and support for cells,
& many more.
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Drug targets: PROTEINS
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Gene expression begins with DNA and results in a protein.

Ø Proteins are assembled from amino acids using information encoded in genes.
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Ø Proteins consist of one or more long chains 
of amino acid residues.

Ø In Eukaryotes, there are 21 proteinogenic amino acids.

Drug targets: PROTEINS

Protein sequence
Ø The sequence of the amino acid chain

causes the polypeptide to fold into
a shape that is biologically active.
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Drug targets: PROTEINS
ß Amino acid



Drug-protein 
interaction

(DPI) 
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One of the most common
drug’s mechanism

of action (MoA)

Drug-protein interaction = molecular-level interaction, e.g., 

hydrogen bonds keep a compound
tightly bound to a protein,...

hydrophobic protein atoms enclose 
hydrophobic compound atoms.
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Drug-protein interaction 
Statin–HMG-CoA reductase

Inhibition of HMG-CoA reductase 
enzyme with statin

HMG-CoA reductase
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Aspirin–Cyclooxygenase
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protein 

Aspirin

Responsible for the production 
of hormones causing, 

among others, inflammation, 
swelling, fever and pain.

Drug-protein interaction 



Imatinib–BCR-ABL Imatinib
Drug-protein interaction 

CS-E4880
8 March 2019

10



Ø Neutral

Ø Negative
§ Imatinib–c-ABL à cardiotoxic side effects.

Ø Positive
§ Imatinib–KIT à treatment of gastrointestinal cancer.

Off-target interactions 
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Drug-protein interaction mapping 
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§ Expensive
§ Time consuming



Enormous chemical universe
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Only certain molecules have features 
consistent with good pharmacological 
properties (e.g. Lipinski's rule of five).

1020 - 1024 !

CHEMICAL SPACE 

Lipinski's rule of five states that, 
in general, an orally-absorbed drug 
has no more than one violation of the 
following criteria:
• no more than 5 hydrogen bond donors;
• no more than 10 hydrogen bond acceptors;
• a molecular weight lower than 500 daltons;
• an octanol-water partition coefficient logP

(a measure of lipophilicity) not greater 
than 5.

Note that the name of the rule originates from 
the fact that the cut-offs for all parameters are 
close to 5 or a multiple of 5.



Motivation for computational methods 
in drug discovery
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Ø Experimental drug-protein interaction mapping is time consuming
and expensive.

Ø Moreover, it is simply infeasible to determine all the possible drug-protein
interactions in the laboratory (1020 - 1024 drug-like compounds!)

Ø The hypothesis is that computational models could
provide fast, large-scale and systematic
pre-screening of chemical probes, toward prioritization
of the most potent interactions for further in vitro
or ex vivo verification in the laboratory.



In silico drug screening
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Ø Docking Simulations

§ Finding preferred orientation of one molecule 
to a second one when bound to each other 
to form a stable complex.

§ DOCK: first docking program by Kuntz et al. (1982).

§ Some algorithms:
– Fragment-based methods: FlexX, DOCK (since version 4.0);
– Monte Carlo/Simulated annealing: QXP(Flo), Autodock, Affinity & LigandFit (Accelrys);
– Genetic algorithms: GOLD, AutoDock (since version 3.0);
– Systematic search: FRED (OpenEye), Glide (Schro ̈dinger). 

§ Very accurate but slow.

§ Require the usage of 3D molecular structures. 



In silico drug screening
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Ø Machine Learning

§ Less accurate but orders of magnitude 
faster than docking simulations; thus, more 
preferable for early-stage in silico drugs screening.

§ The objective is to derive rules from the existing bioactivity data (a phase of learning 
from training data) in order to build predictive models that can be then applied 
to infer unmeasured drug-protein binding affinities (prediction phase).

§ Drug-based methods (quantitative structure-activity relationship QSAR models)
Models trained using available bioactivity data + drug information.

§ Protein-based methods
Models trained using available bioactivity data + protein information.

§ Systems-based methods (proteochemometric models, pairwise models)
Models trained using available bioactivity data + both drug and protein information.
Assumption: similar drugs are likely to interact with similar proteins.



Systems-based 
DPI prediction 

methods
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Ø Classification
interaction/no interaction 

Ø Regression 
quantitative binding affinity

Known drug-protein 
interaction (DPI) 

network 

Protein space 

Drug space 

Protein-protein 
connections 

Chemical  structures Transcriptional 
responses 

Protein sequences Protein-protein 
interactions 

network 

Side effects 

Gene Ontology 

New DPIs  
prediction 

Drug-drug 
connections 

Cichonska A et al. (2015) “Identification of drug candidates and repurposing 
opportunities through compound-target interaction networks”. 

Expert Opinion on Drug Discovery.



Kronecker 
regularized 

least-squares 
(KronRLS)  

Predicted  
DPIs 

D
ru

g
-p

ro
te

in
 p

a
irs

 D
ru

g
s 

Drugs 

Proteins 

Pr
o

te
in

s 

LABELS 

KERNELS 

CS-E4880
8 March 2019

18

Known drug-protein 
interaction (DPI) 

network 

Protein space 

Drug space 

Protein-protein 
connections 

Chemical  structures Transcriptional 
responses 

Protein sequences Protein-protein 
interactions 

network 

Side effects 

Gene Ontology 

New DPIs  
prediction 

Drug-drug 
connections 

Kronecker 
regularized 

least-squares 
(KronRLS)  

Predicted  
DPIs 

D
ru

g
-p

ro
te

in
 p

a
irs

 D
ru

g
s 

Drugs 

Proteins 

Pr
o

te
in

s 

LABELS 

KERNELS 

Kronecker 
regularized 

least-squares 
(KronRLS)  

Predicted  
DPIs 

D
ru

g
-p

ro
te

in
 p

a
irs

 D
ru

g
s 

Drugs 

Proteins 

Pr
o

te
in

s 

LABELS 

KERNELS 
Kronecker 
regularized 

least-squares 
(KronRLS)  

Predicted  
DPIs 

D
ru

g
-p

ro
te

in
 p

a
irs

 D
ru

g
s 

Drugs 

Proteins 

Pr
o

te
in

s 

LABELS 

KERNELS 

Classification
or regression

algorithm

K
ro

ne
c

ke
r 

re
g

ula
rize

d
 

le
a

st-sq
ua

re
s 

(K
ro

nRLS)  

Pre
d

ic
te

d
  

D
PIs 

Drug-protein pairs 

Drugs 

D
ru

g
s 

Pro
te

in
s 

Proteins 

LA
BELS 

K
ERN

ELS 

Predicted 
DPIs

Similarities between molecules 
can be encoded 

using kernel functions.



Ø Kernels allow modelling nonlinearities in the data using well-established 
linear learning algorithms (in a computationally efficient manner).

Ø Formally, a kernel is a function that for all instances x, z ∈ " (e.g. drugs) 
satisfies

where # denotes the mapping from the input space "
to an inner product high-dimensional feature space ℋ.

& ', z = exp − ' − / 2

212

" ℋ

#

& ', z = # ' , #(z) ,

Example

Kernels
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Kernels

Ø Kernel trick
It is possible to avoid the explicit computation of the mapping ! and define the
kernel directly in terms of the original input features by replacing the inner
product "," with an appropriately chosen kernel function.
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Example. Consider a two-dimensional input space together with the feature map: 

$ %, & = ! % , !(&)



Kernels
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Ø Kernels address the challenge of 
#instances (e.g. drugs) ≪ #features (e.g. various chemical properties)
à data appears only through the entries in the kernel matrix 

relating all pairs of instances. 

Kernels
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Ø Kernels are well-suited for representing
structured objects, such as molecules,
that cannot always be accurately described
by a standard feature vector.

Ø Kernel can be considered as a similarity
measure between input instances.

Kernel matrix
D

RU
G

S

DRUGS

CS-E4830 - Kernel Methods in Machine Learning
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h"ps://www.ebi.ac.uk/chembl/

h"ps://pubchem.ncbi.nlm.nih.gov/

http://www.drugbank.ca/

§ Data generators deposit their data.
§ Incorporates data from other databases, e.g. ChEMBL.
§ Contains data on ~40 mln compounds.

§ 12 065 compounds.
§ Does not contain strictly bioactivity data.
§ Pharmacokinetics.

§ Searchable and downloadable. 
§ Data manually extracted from the literature.
§ Target Report Card, Compound Report Card. 
§ ~2.3 mln compounds in ChEMBL 24.

Known interactions – bioactivity databases
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h"ps://drugtargetcommons.fimm.fi/

Known interactions – bioactivity databases
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§ Crowd-sourcing platform to improve the
consensus and use of drug-target interactions.

§ The end users can search, view and download
bioactivity data using various compound, target
and publications identifiers.

§ Expert users may also submit suggestions to edit
and upload new bioactivity data, as well as
participate in the assay annotation and data
curation processes.
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Molecular fingerprint
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Example

Ø A way of encoding the structure of a molecule.

Ø The most common type of fingerprint is a series of binary digits (bits) 
that represent the presence or absence of particular substructures 
in the molecule.

Chemical 
space
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2D fingerprints Chemical 
space

Dictionary-Based Fingerprints
Pre-defined fragments, each of which maps 
to a single bit. 
Examples: MACCS Keys, BCI.

Path-Based Hashed Fingerprints
Fragments are generated algorithmically
without the need for a dictionary, e.g., all
paths up to seven non-hydrogen atoms from
the source atom.
Examples: Daylight, UNITY fingerprints.

Circular Hashed Fingerprints
Each atom is represented together 
with its environment (neighbouring atoms 
as extended spheres). 
Examples: ECFP2, ECFP4.



CS-E4880
8 March 2019

29

3D fingerprints Chemical 
space

Presence or absence of geometric features, 
e.g., pairs/triplets of atoms at given distance, 

valence/torsion angles.



Fingerprint-based Tanimoto kernel
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K( fp1, fp2 ) =
N fp1, fp2

N fp1
+ N fp2

− N fp1, fp2

fpi        − fingerprint of the molecule i,
N fpi

     − number of 1-bits in the fingerprint fpi,
N fp1, fp2

 − number of 1-bits in both fingerprints.

§ Atoms are represented 
as Gaussian functions.

§ Molecules are aligned in 3D.
§ Similarity score is based 

on the common volume. 

3D shape-based comparison

§ Computed based on the size 
of common substructures 
of the molecules represented 
by the fingerprints. 

Chemical 
space



Graph kernel
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Ø Graph kernels allow to measure
the similarity between graphs.

Ø Chemical molecule can be represented
as a labeled or unlabeled graph, where
a node corresponds to an atom,
and an edge indicates a bond between
two atoms.

Ø Graph kernels can be roughly categorized into three main groups:
1) graph kernels based on walks and paths,
2) graph kernels based on limited-size subgraphs,
3) graph kernels based on subtree patterns.

Ø Examples: random walk kernel, shortest-path kernel, Weisfeiler-Lehman subtree kernel. 

Chemical 
space



Graph
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Chemical 
space

Ø A graph G is a set of nodes (vertices) V and edges E.

Ø The adjacency matrix A of G is defined as .[A]ij =
1   if (vi,vj )∈ E
0  otherwise

"
#
$



Random walk
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Chemical 
space

Ø Walk – a sequence of nodes, in which consecutive nodes are connected by an edge.
A walk can travel over any edge and any node any number of times.

Ø Walks of length k can be computed by taking the adjacency matrix A to the power of k. 
Ak(vi,vj) = m  à m walks of length k exist between nodes vi and vj.

Ø A graph G is a set of nodes (vertices) V and edges E.

Ø The adjacency matrix A of G is defined as .

v1

v2
v3

v4

v6

v5v7

[A]ij =
1   if (vi,vj )∈ E
0  otherwise

"
#
$

w = (v1, v2, v6, v7, v2, v6, v5)



Random walk graph kernel
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Chemical 
space

Ø Random walk kernel computes the number of all pairs of matching walks 
in a pair of graphs. 

Ø TRICK: common walks of length k can 
be calculated from the adjacency matrix 
of the product graph G× of two input 
graphs G1 and G2.

Ø G× is a graph over pairs of vertices from 
G1 and G2. Two vertices in G× are neighbours 
if and only if the corresponding vertices 
in G1 and G2 are both neighbours.

Vishwanathan S et al. (2010) "Graph kernels”. 
The Journal of Machine Learning Research.

G1 G2

G×

Counts all pairs 
of matching walks 

of any length 

Ø Random walk kernel

K×(G1,G2 ) = [ λ nA×
n

n=0

∞

∑ ]ij
i, j=1

|V×|

∑ = [(I −λA× )
−1]

i, j=1

|V×|

∑

CS-E4830 - Kernel Methods in Machine Learning



Problem with using chemical 
structures
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Chemical 
space

Ø Sometimes structurally similar molecules can have different properties.

2D Tanimoto 
similarity

99%

95%



Additional information
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Ø Side effects.

Ø Anatomical Therapeutic Chemical 
(ATC) Classification System.

Ø Gene expression responses 
to drugs.

Chemical 
space

Example:   Glibenclamide (A10B B01)   

A10 Drugs used in diabetes  
(main therapeutic group)

A10B Oral blood-glucose-lowering drugs 
(pharmacological subgroup)

A10B B Sulfonamides, urea derivatives 
(chemical/therapeutic subgroup)

A10B B01 Glibenclamide (subgroup
for chemical substance)

A Alimentary tract and metabolism  
(main anatomical group)
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Amino acid sequence alignment
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Protein
space

s(p1, p2 ) =
SW (p1, p2 )

SW (p1, p1) SW (p2, p2 )
.

Ø Protein sequence alignment is a way of arranging the amino acid sequences
to identify regions of similarity that may be a consequence of functional, structural,
or evolutionary relationships between the sequences.

Ø Smith-Waterman (SW) algorithm
§ Performs local sequence alignment; uses dynamic programming to compare 

segments of all possible lengths.
§ To find the optimal alignment, a scoring system including a set of specified 

gap penalties is used (different scoring matrices, e.g. BLOSUM, PAM).
§ The algorithm assigns a score to each residue comparison between two sequences.

§ Normalized similarity
between two proteins p1 and p2:

CS-E5865 - Computational Genomics
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Protein
space

Shifting 
contribution 

term

Similarity of the amino acids 
in the substrings x and x’ 

Each type of amino acid  ak,  k = 1,...,K,  (e.g. Asparagine) has a corresponding 
feature vector ψ(ak) which defines 
its d properties:
ψ(ak) = (ψ1(ak), ψ2(ak),..., ψd(ak)).

Giguère S et al. (2013) “Learning a peptide-protein binding affinity predictor 
with kernel ridge regression”. BMC Bioinformatics. 

Generic String (GS) kernel

Protein sequence

Polarity
Volume

Hydrophobicity
ψ(A) ψ(M)

x
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Protein
space

Shifting 
contribution 

term

Similarity of the amino acids 
in the substrings x and x’ 

Each type of amino acid  ak,  k = 1,...,K,  (e.g. Asparagine) has a corresponding 
feature vector ψ(ak) which defines 
its d properties:
ψ(ak) = (ψ1(ak), ψ2(ak),..., ψd(ak)).

Giguère S et al. (2013) “Learning a peptide-protein binding affinity predictor 
with kernel ridge regression”. BMC Bioinformatics. 

Generic String (GS) kernel

Given a string  x = x1,x2,...,xl,  ψl(x) is its encoding function which concatenates 
l vectors describing each amino acid the string x is composed of:
ψl(x) = (ψ(x1), ψ(x2),..., ψ(xl)).
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Protein
space

Shifting 
contribution 

term

Similarity of the amino acids 
in the substrings x and x’ 

Giguère S et al. (2013) “Learning a peptide-protein binding affinity predictor 
with kernel ridge regression”. BMC Bioinformatics. 

Generic String (GS) kernel

ψ(A) ψ(M)

ψl(x)

x



Amino acid sequence alignment
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Protein
space

Ø Some proteins might have very low amino acid 
sequence identity but similar 3D structures.  



Additional information
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Protein
space

Ø 3D protein structures (Protein Data Bank PDB, 
computational prediction algorithms);

Ø Binding sites, domains;

Ø Protein surface;

Ø Protein-protein 
interaction network; 

Ø Gene Ontology classifications
(http://geneontology.org/).

http://wwpdb.org/

Three domains:
1) biological processes, 
2) cellular components,
3) molecular functions.
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Ø Classification is the prediction of a class label, given attributes. 
Ø Regression is the prediction of a real number, given attributes. 

Inferring a function from 
LABELED training data

INGREDIENTS 
§ X:  a space of inputs.

§ Y:  a space of outputs.

§ G:  a set of models mapping input to output  G = {g: X Y}.

§ Training dataset S: {(xi,yi)}, i=1,...,N,  xi X, yi Y  
sampled from an underlying unknown distribution (x,y)~D.

§ L: a loss function measuring the discrepancy between the model’s 
predicted outputs and true outputs.

∈ ∈

GOAL: to find a model g that minimizes the expected loss L(g(x),y) 
on future instances.
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x

y

g1(x)

g2(x)

g1(x):  more complex model, overfitting.
g2(x):  generalizes better to new instances.
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Ø Regularized learning considers optimising the functions of the form:

Training error (loss), 
typically, squared loss: 
L(g(xi),yi) = (g(xi) – yi)2.

Regularizer that controls 
the complexity of the model g.

§ Complex model g à high value of Ω(#).
§ Regularization parameter λ ≥ 0 controls

the balance between training error and 
model complexity. 

arg min
*∈,

-
./0

1
L # 2. , 4. + 6Ω(#) Regularized empirical risk
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Ø A model in the form of a linear function where ! ∈ ℝ$
is the vector of model parameters to be found by minimizing  ∑&'() L * +& , -& + /Ω(*).

Ø The choice of the loss function and regularization determines the learning algorithm.

* + = !, + = !3+,

L * +& , -& Ω(*) Algorithm

max 0, 1 − * +& -& , 

where 7 ∈ −1,+1
! 2 = !,! Support vector machine 

(SVM)

* +& − -& 2, 

where 7 ∈ ℝ9
! 2 = !,! Ridge regression

* +& − -& 2, 

where 7 ∈ ℝ9
! 1 = :

;'(

$
<;

Least absolute
shrinkage and selection 

operator regression (LASSO)
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Ø Given the squared loss and quadratic regularizer, the optimization problem 
of ridge regression can be written as:

arg min
'

(
)*+

,
-) − ', 0) 2 + 3 ' 2

arg min
'

4 − 5', 4 − 5' + 3 ',' , 4 ∈ ℝ8, 5 ∈ ℝN × p

;
;' 4 − 5', 4 − 5' + 3 ',' = 0

' = (5?5 + 3@A)C+ 5?4

@A is a p × p identity matrix

5?5' + 3' − 5?4 = 0
5?5' + 3' = 5?4
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Ø The optimal ! can be written as a linear combination of the examples 
by introducing so called dual variable " ∈ ℝ%:

! = (
)*+

%
,)-) = ./" .

Ø Now, we can represent model’s prediction in terms of inner products 
of training examples

1 - = !, - =(
)*+

%
,) -), -

where 3 is a vector with kernel values between each training example
-) and a test example - for which the prediction is made.

=(
)*+

%
,)4(-), -) = "/3,

à we can use kernels: 
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Ø Given the squared loss and quadratic regularizer, the optimization problem 
of ridge regression can be written as:

arg min
'

(
)*+

,
-) − ', 0) 2 + 3 ' 2

arg min
'

4 − 5', 4 − 5' + 3 ',' , 4 ∈ ℝ8, 5 ∈ ℝN × p

;
;' 4 − 5', 4 − 5' + 3 ',' = 0

' = (5?5 + 3@A)C+ 5?4

@A is a p × p identity matrix

5?5' + 3' − 5?4 = 0
5?5' + 3' = 5?4



Kernel ridge regression (KRR)

CS-E4880
8 March 2019

53

Ø We can rewrite equation  !"!# + %# = !"' in terms of # to get:

Ø The solution to ridge regression in the dual space (i.e. KRR) has a closed form

# = (
)*+

,
-).) = !"/ .

# = %1+!" ' − !# = !"/.

/ = (!"! + %4, )1+'

/ = (6 + %4, )1+'

Saunders C et al. (1998) “Ridge regression learning algorithm in dual variables”. 
In Proceedings of the 15th International Conference on Machine Learning.

6 ∈ ℝN ×N
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§ A set of nd drugs:

§ A set of np proteins:

§ A set of N training examples 
(drug-protein pairs):

§ N ≤ nd× np

§ yi: a real value indicating binding affinity of ith drug-protein pair xi

§ Pairwise kernel matrix ! ∈ ℝN ×N

% = '(,… , '+,
- = .(,… , .+/

0 = ('(, .(), … , ('(, .+/), ('3, .(), … , ('3, .+/), … ,… , ('+,, .+/)

Ingredients 
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Pairwise kernel
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Ø Defined for any two matrices B and C of arbitrary size.

Ø Resulting matrix contains all possible products of entries of B and C.

Example
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Pairwise kernel

Number of proteins

Ø The size of a pairwise kernel matrix ! makes the model training computationally infeasible
in typical applications.
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Ø It is possible to use algebraic properties of the Kronecker product to avoid
the explicit computation of the pairwise kernel, and therefore significantly speed
up the model training.

Pahikkala T et al. (2013) “Efficient regularized least-squares algorithms 
for conditional ranking on relational data”. Machine Learning.

Airola A and Pahikkala T (2017) “Fast Kronecker product kernel methods via
generalized vec trick”. IEEE Transactions on Neural Networks and Learning Systems.

Pairwise KRR – shortcut

! = ($ + &'()*+,
= ($-⨂ $/ + &'()*+vec 3
= ((4-5-4-6)⨂(4/5/4/6) +&'()*+vec 3
= vec(4/74-6 )

Eigen-decomposition of the kernel 
matrices KD and KP

vec(7) = (5-⨂5/ + &'()*+vec(4/6364-)

diag 5-⨂5/ = diag 5- ⨂diag 5/ = vec(diag(5/)diag(5-)6)

The above works if 3 has no missing values, i.e., N = nd × np
(small number of missing values can be imputed
as a pre-processing step).

n d
dr

ug
s

np proteins

3
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Ø Classical kernel-based algorithms rely on a single kernel – the view resulting
in the highest predictive performance is considered the best one.

Ø Risk of loosing some important information by dropping all the other views.

Ø Ideally, one would like to learn the importance of each kernel matrix in a given
task, and then use a weighted combination of them:

Ø One-stage MKL methods learn the kernel combination and prediction model
parameters jointly.

Ø Two-stage MKL methods find the optimal kernel weights before subsequent
phase of learning a classifier or regressor.

!" =$
%&'

(
)%!(%)
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Ø UNIMKL
Equal kernel weights 

Ø ALIGN
Kernel weights chosen to be proportional to their centered alignment 
with so-called “ideal” response kernel !" derived from the label values:

#$ =
1
' .

D
ru

g-
pr

ot
ei

n 
pa

irs

y !"

D
ru

g-
pr

ot
ei

n 
pa

irs

Drug-protein pairs

!) $

Drug-protein pairs

#$ ∝ +, !) $ , !" =
!) $ , !"

.
!) $

.
!" .

D
ru

g-
pr

ot
ei

n 
pa

irs

/,0 . = vec(/)6vec(0)
!) = 7!7

7 = 8 − ::
6

;
The sum of the rows (columns) of !)
yields the zero vector !)1 = < (:6!) = <6).

Cortes C et al. (2012) “Algorithms for learning kernels based on centered 
alignment”. Journal of Machine Learning Research.
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Cortes C et al. (2012) “Algorithms for learning kernels based on centered 

alignment”. Journal of Machine Learning Research.

arg max
&

'( )*+ , )- =max
&

)*+ , )- /

)*+ /

,

subject to: & 9 = 1, & ≥ 0.

D
ru

g-
pr

ot
ei

n 
pa

irs

y )-

D
ru

g-
pr

ot
ei

n 
pa

irs

Drug-protein pairs Drug-protein pairs
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n 
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irs

)*

>, ? / = vec(>)Cvec(?)

)+ = D)D

D = E −
GGC

H

The sum of the rows (columns) of )+
yields the zero vector )+1 = I (GC)+ = IC).

Ø ALIGNF
Kernel mixture weights are determined 
by maximising the centered alignment 
between the combined kernel )*
and the response kernel )-:
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Cortes C et al. (2012) “Algorithms for learning kernels based on centered 

alignment”. Journal of Machine Learning Research.

The above optimization problem can be solved via a simple quadratic programming:

Optimal kernel weights are given by !∗= $∗

$∗
, where $∗ is the solution to the above 

QP.

min
$)*

$+,$ − 2$+/ ,

(/)2 = 34 2 , 35 6
, 7 = 1, … , :,

(,)2; = 34 2 , 34 ; 6 7, < = 1, … , :.

Ø ALIGNF
Kernel mixture weights are determined 
by maximising the centered alignment 
between the combined kernel 3>
and the response kernel 35:

arg max
!

DE 3>4 , 35 =max
!

3>4 , 35 6
3>4 6

,

subject to: ! N = 1, ! ≥ 0.
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Again, the immense size of pairwise kernel spaces
makes the model training infeasible in practical applications.

10 drug kernels
12 protein kernels



pairwiseMKL (i.e. ALIGNF for pairwise kernels)
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Cichonska A et al. (2018) “Learning with multiple pairwise kernels 
for drug bioactivity prediction”. Bioinformatics.
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Cichonska A et al. (2018) “Learning with multiple pairwise kernels 
for drug bioactivity prediction”. Bioinformatics.



§ Now, the quantities (inner products) required by ALIGNF can be computed 
without explicitly building the huge pairwise kernels

§ Bottleneck in using ALIGNF with pairwise kernels is the centering of the kernel, 
required by the algorithm

§ Key contribution: factorized form for the centering operator 

pairwiseMKL

! = # − %%
&

' =(
)*+

,
-.())⨂-2())

34 = !(3.⨂ 32)!
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(5)67 = 34 6 , 34 7 9 = ∑)*+, ∑;*+, tr(-.())3.(6)-.(;)3.(7)) tr(-2())32(6)-2(;)32(7))

(>)6 = 34 6 , 3? 9 = @, A , where

A = ∑)*+, ∑;*+, vec (-2) 326 -2; )E(-.) 3.6 -.; ) @ = vec(E)



§ In multiple kernel learning for classification tasks, it is usual to choose the 
response kernel of the form:

§ This works in binary classification, since positive and negative classes are 
perfectly separated.

§ However, it fails completely with real values, as large numbers get large kernel 
values, and small numbers get small kernel values.

§ The Gaussian kernel would work better as it is translation invariant.

§ However, the factorized centering procedure requires explicit representation 
of the response matrix Y (y =	vec(Y)).

pairwiseMKL

69

(+,)-. = /-/. = 0+1, if /- = /.
−1, if /- ≠ /.

/- = /. = 1 ⇒ /-/. = 1
/- = 1, /.= 1000 ⇒ /-/. = 1000

(+,)-. = exp − /- − /.
<

2><



§ We start fitting a mixture of Gaussians onto the
frequency histogram of the response variable,
obtaining a density f(b) for each bin b.

§ For each value y, a window of S bins around 
it is defined: 

§ Feature vector for y is read off the bin 
densities, and normalized.

§ Kernel: sum of products of S	 bin densities.

§ Intuitively, the kernel measures the alignment 
of the original density f	with f shifted by byi -byj
bins.

-5 7 9

pairwiseMKL

(+,, +, + 1,… , +, + 1 − 1)

3 4 = (6(+,), 6(+, + 1),… , 6(+, + 1 − 1))

7, = ∑9:;< 3 9 3 9 =

3 9 = > 9 4; , … , > 9 4?
N

S

3 9

A

y
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§ We can now compute the centered kernel 
alignment between each input kernel and 
the Gaussian response kernel:

pairwiseMKL

!" = ∑%&'( ) % ) % *

-5 7 9

N

S

) % = vec(1)

3

(4)5 = !6 5 , !" 8 = ∑%&'( ) % ,9 ,

9 = ∑:&'; ∑<&'; vec (=>: !>5 =>< )1(=?: !?5 =?< )

72



Pairwise prediction scenarios

CS-E4880
8 March 2019

73

Cichonska A et al. (2017) “Computational-experimental approach 
to drug-target interaction mapping: A case study on kinase inhibitors”. 

PLOS Computational Biology.



OVERALL AIMS 

§ To evaluate machine learning models as systematic tools for guiding 
drug-protein mapping efforts to prioritize most potent and selective agents 
for further experimental evaluation. 

§ The participating teams are challenged with two overall questions:
o What are the best machine learning approaches for predicting 

drug-protein binding affinities? 
o What are the most predictive features for drug compounds

and protein targets? 

§ Specific focus on kinase inhibitors, due to their clinical importance, 
toward extending the druggability of human kinome space. 

www.synapse.org/DrugKinaseChallenge

74



Other pairwise learning problems 
in bioinformatics 
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Ø Drug response in cancer 
cell line prediction.

Ø mRNA-miRNA 
interaction 
prediction.

Ø Protein-protein 
interaction prediction.


