Introduction to microbiology

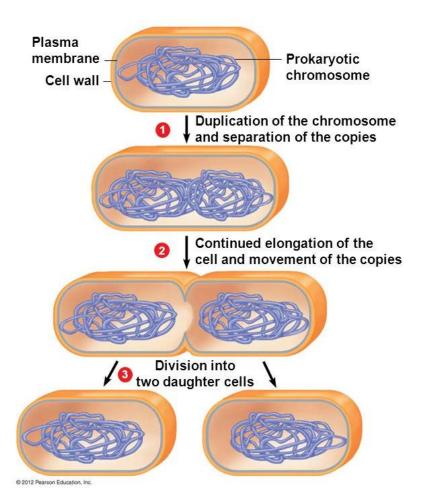
Cell functions and growth

Antonina Kruglova 21.03.2019

Outline

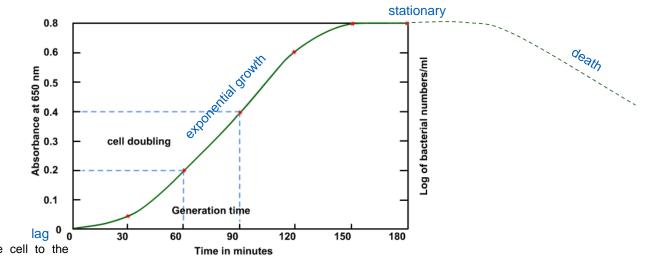
- 1. Bacterial growth
- 2. Factors affecting growth
- 3. Energy production in bacterial cells

Bacterial growth


Complex process involving numerous anabolic (synthesis of cell constituents and metabolites) and catabolic (breakdown of cell constituents and metabolites) reactions.

Generation time

- time required for a cell to divide and form 2 cells
- time required for a population to double
- from 30 min to >10 days

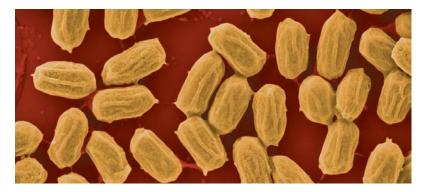

Binary fission

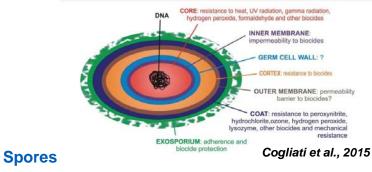
Bacterial growth

Generation time:

- ✓ AOBs: 8 h to several days (opt conditions)
- ✓ NOBs: 10 hours to several days
- ✓ Denitrifiers: from several hours to several days
- ✓ Anammox: 7-11 days (T_{opt})

- physiological adaptation of the cell to the new conditions.
- protein synthesis to meet new culture requirements (contaminants)

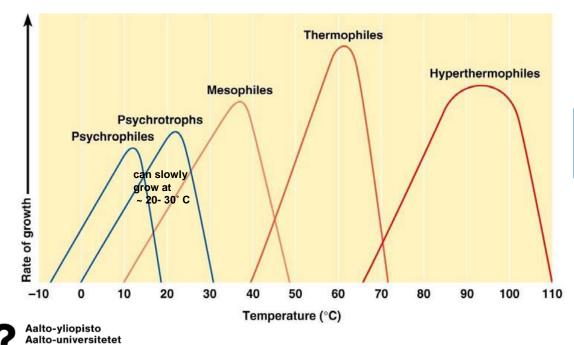

Factors affecting bacterial growth


Physical conditions:

- Temperature
- pH
- Osmotic pressure
- Radiation
- Mechanical & sonic stress

Chemical requirements:

- Nutrients: macronutrients, micronutrients
- Enzymes, organic growth factors
- Oxygen


- $\checkmark\,$ resistant to heat, pressure, radiation and strong acids $\,$ and bases $\,$
- $\checkmark\,$ may survive for many years and decades

Temperature

- 1. Psychrophiles ("cold- loving")
- 2. Mesophiles ("moderateT- loving")
- 3. Thermophiles ("heat- loving")

Aalto University

Minimum: the lowest T that a species will grow Optimum: best growth T (fastest reproduction) Maximum: highest T that growth is possible

Nutrients

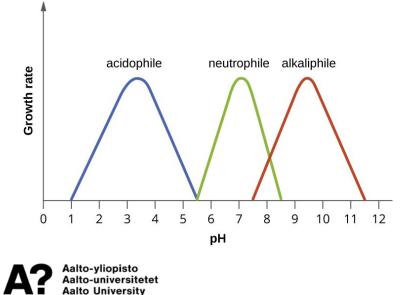
Macronutrients

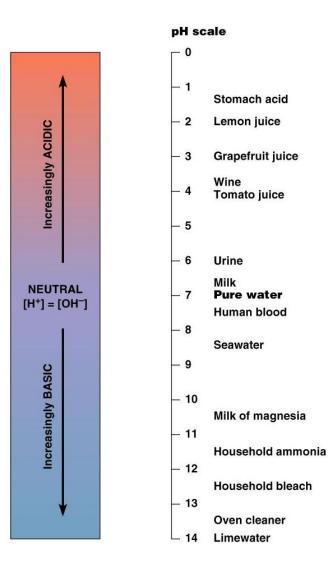
- ✓ Carbon (CO₂ or organic compounds)
- ✓ Hydrogen (H₂O or organic compounds)
- ✓ Oxygen (H₂O or organic compounds)
- ✓ Nitrogen (NH₃, NO₃⁻, organic N-compounds)
- ✓ Phosphorus (PO4³⁻)
- ✓ Sulfur (H2S, SO₄²⁻, organic compounds)
- ✓ Potassium (K⁺)
- ✓ Magnesium (Mg²⁺, salts)
- ✓ Sodium (Na+)
- ✓ Calcium (Ca²⁺, salts)
- ✓ Iron (Fe³⁺, Fe²⁺ or salts)

Micronutrients

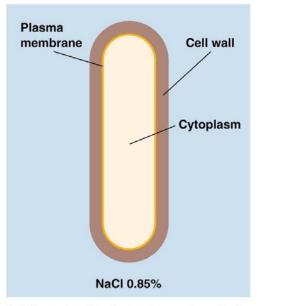
- ✓ manganese
- ✓ zinc
- ✓ cobalt
- ✓ molybdenum
- ✓ nickel
- ✓ copper

Growth factors

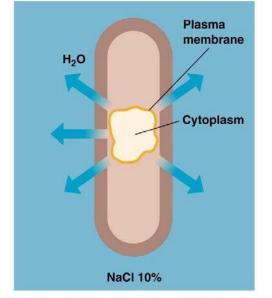

- ✓ Vitamins,
 ✓ amino acids,
 ✓ purines,
 ✓ pyrimidines,
 ✓ folic acid
- √acetate
- ✓ riboflavin


Oligotrophic bacteria

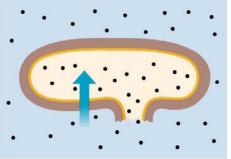
- grow in the environments with extremely low levels of nutrients
- common in drinking water, urine, air etc.
- characterized by slow growth, low rates of metabolism
- alternative energy sources
- different survival strategies


рΗ

- most bacteria grow in a neutral environment ~ 6.5 7.5
- bacteria produce metabolites which may change pH



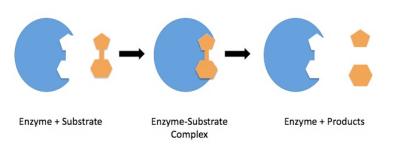

Osmotic pressure


(a) Normal cell in isotonic solution. Under these conditions, the osmotic pressure in the cell is equivalent to a solute concentration of 0.85% sodium chloride (NaCl).

(b) Plasmolyzed cell in hypertonic solution. If the concentration of solutes such as NaCl is higher in the surrounding medium than in the cell (the environment is hypertonic), water tends to leave the cell. Growth of the cell is inhibited.

SanaUllah Jamil Ahmad SaeedUllah (M.phil II)

(d) Hypotonic solution water moves into the cell and may cause the cell to burst if the wall is weak or damaged (osmotic lysis)

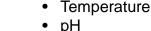

Chemical requirements (media)

- Water (80-85% weight of cells)
- Carbon (50%)
- Oxygen (20%)
- Nitrogen (14%)
- Hydrogen (8%)
- Phosphorus (3%)
- Sulfur (1%)
- Potassium (1%)
- Sodium (1%)
- Calcium (0.5%)
- Magnesium (0.5%)
- Chlorine (0.5%)
- Iron (0.2%)
- Others (0.3%)

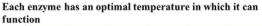
Enzymes

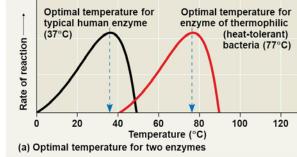
altered active site

substrate

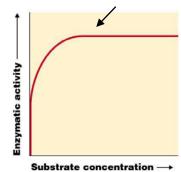

Molecule (proteins, RNA), which speed up chemical reactions

Factors, affecting enzymes activity

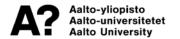

enzyme


antibiotic

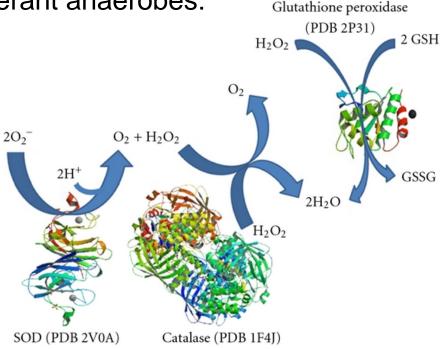
Enzyme can not bind to substrate.



- Concentration of substrate
- Inhibitors



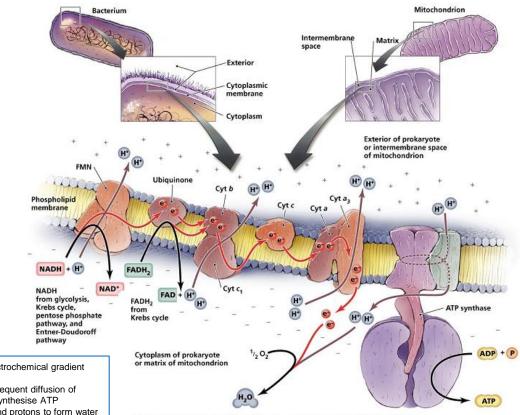
All active sites filled


https://www.youtube.com/watch?v=yk14dOOvwMk&inde x=17&list=PLTH8ahUIcvwRCscNWDRcD2ZrzBjbrPLt9

Oxygen tolerance and enzymes

Aaerobes and facultative/aerotolerant anaerobes:

- ✓ Catalase
- ✓ Peroxidase
- ✓ Superoxide dismutase (SOD)

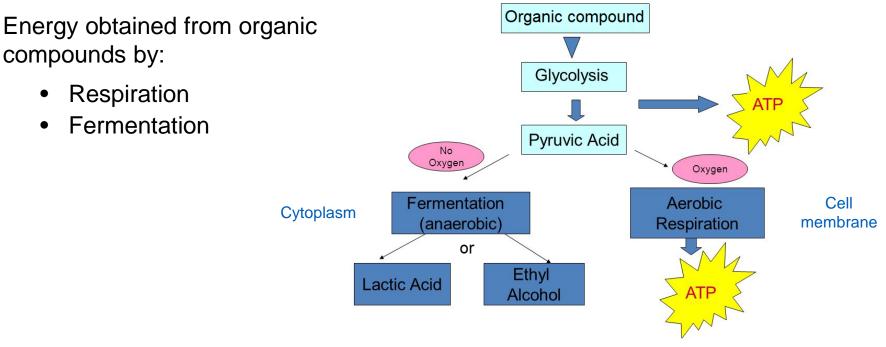

Oxyge	n	a. Obligate Aerobes	b. Facultative Anaerobes	c. Obligate Anaerobes	d. Aerotolerant Anaerobes	e. Micro- aerophiles
	Effect of Oxygen on Growth	Only aerobic growth; oxygen required.	Both aerobic and anaerobic growth; greater growth in presence of oxygen.	Only anaerobic growth; ceases in presence of oxygen.	Only anaerobic growth; but continues in presence of oxygen.	Only aerobic growth; oxygen required in low concentration.
	Bacterial Growth in Tube of Solid Growth Medium			0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	
	Explanation of Growth Patterns	Growth occurs only where high concentrations of oxygen have diffused into the medium.	Growth is best where most oxygen is present, but occurs throughout tube.	Growth occurs only where there is no oxygen.	Growth occurs evenly; oxygen has no effect.	Growth occurs only where a low concentration of oxygen has diffused into medium.
Aalto-yliopisto Aalto-universitetet Aalto University	Explanation of Oxygen's Effects	Presence of enzymes catalase and superoxide dismutase (SOD) allows toxic forms of oxygen to be neutralized; can use oyygen.	Presence of enzymes catalase and SOD allows toxic forms of oxygen to be neutralized; can use oxygen.	Lacks enzymes to neutralize harmful forms of oxygen; cannot tolerate oxygen.	Presence of one enzyme, SOD, allows harmful forms of oxygen to be partially neutralized; tolerates oxygen.	Produce lethal amounts of toxic forms of oxygen if exposed to normal atmospheric oxygen.

Energy production

Oxidation - Reduction

Energy molecules in cells

 $\begin{array}{ccc} \mathsf{ATP} & \longleftrightarrow & \mathsf{ADP} + \mathsf{Pi} \\ \mathsf{NADH} & \longleftrightarrow & \mathsf{NAD} + + \mathsf{H} + + 2\mathsf{e} \\ \mathsf{FADH}_2 & \longleftrightarrow & \mathsf{FAD} + 2\mathsf{H} + + 2\mathsf{e} \end{array}$



- 1. Proton pumps create an electrochemical gradient (proton motive force)
- 2. ATP synthase uses the subsequent diffusion of protons (chemiosmosis) to synthesise ATP
- 3. Oxygen accepts electrons and protons to form water

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Carbohydrate Catabolism

Microorganisms oxidize carbohydrates as their primary source of energy

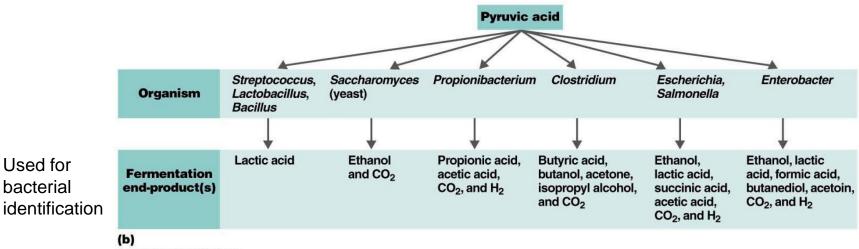
Aerobic Respiration

 electrons released by oxidation are passed down down e- transport chain with oxygen being the final electron acceptor

Process:	Start molecule	End molecule	Energy molecules produced	<u>Waste</u>
Glycolysis	Glucose	Pyruvate	2 NADH 2 ATP	-
Oxidation of pyruvate	Pyruvate	Acetyl-CoA	2 NADH	2 CO ₂
Krebs cycle (citric acid cycle)	Acetyl-CoA	-	6 NADH 2 ATP 2 FADH ₂	4 CO ₂
Electron transport chain/ chemiosmosis	NADH FADH ₂	NAD+ FAD	ATP	Water

Anaerobic Respiration

 organic compounds oxidized, electrons passed down e- transport chain to some molecule other than oxygen (e.g. NO3, SO4) and oxygen is not the final electron acceptor:

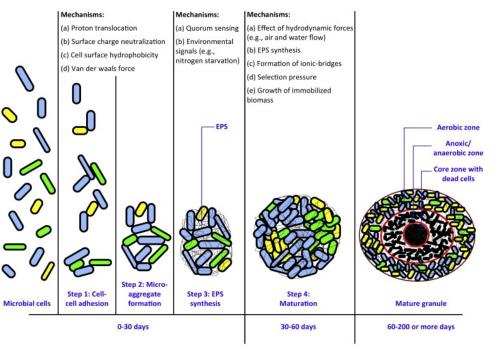

Nitrate (NO³⁻) \longrightarrow Nitrite (NO²⁻) Sulfate (SO₂⁴⁻) \longrightarrow Hydrogen Sulfide (H₂S) Carbonate (CO₂⁴⁻) \longleftarrow Methane (CH₄)

Nitrate respiration Sulfate respiration Methanogenesis

Fermentation

- anaerobic way to produce ATP
- use organic molecules as their final electron acceptor to produce various end-products

Copyright © 2010 Pearson Education, Inc.


Discussion:

Sludge retention time (SRT)

Which of the discussed today parameters can be affected by SRT?

How SRT may influence treatment process efficiency?

