

ELEC-E8111 PROJECT WORK 2019
AUTONOMOUS MOBILE ROBOTS L

ROBOT PROJECT INSTRUCTIONS

Login to the teleoperator computer:

1. Choose an account corresponding to your group number. Accounts for this lab start with “AMR”.

1. All unused accounts have password:

1hailee

2. Change the password after you have found your group, otherwise someone else might login to your account and destroy all of your data.
a. To change the password, type passwd in terminal and do as instructed.

RELATIVELY EASY QUICK START GUIDE

Notes:
· Always keep the power cable of the robot connected when not in use!
· Robot drains its battery quickly and it takes an hour to recharge.
· To reset the computer, hold down the small red button in front of the robot next to the small blue led.
· To reset the motor, press the red reset button on the lower left side of the robot.
· To test the wireless connection between the robot and teleoperator use command ping.
· When turning on the main power it takes some time for the laser scanner to initialize. Scanner is initialized when the green OK light is on.
· You can find more or less extensive ROS documentation at wiki.ros.org.
· Skills in Linux may prove useful.
· Do not allow the robot to hit obstacles, the gears for the wheels can break. If the robot hits an obstacle and cannot be stopped, use the main power switch to stop it.
· Ctrl+Shift+T opens a new tab in the terminal window.
· Tab completion can be very useful.
· You should not make any changes in the pioneer computer system.

IF YOU NEED ASSISTANCE, CONTACT:

Mika Vainio | Room 2568 | mika.vainio@aalto.fi | 0505052156 |
1. INITIALIZE THE PIONEER ROBOT:

1. Turn on the power from the main power switch (black arrow) on the lower left side of the robot.

[image:]
Fig. 1. Motor reset and main power switch.
a. Do not press the reset button (white arrow). If you do, you will need to restart the base from the main switch.

1. To start the computer, press the small red button in front of the robot next to the small blue led.

[image:]
Fig. 2. Computer start / reset.

2. In the teleoperation computer, open a terminal and make a SSH-connection from the teleoperator computer to the robot with the following command:

ssh pioneer@192.168.1.110

a. Password: pioneer19

3. Now we need to start roscore, laserscanner, camera, rosaria packages, etc. All will be done by executing the launch file of the robot:

roslaunch pioneer pioneer.launch

a. You can safely ignore error messages [Error: [Walltime:...] in this window.

4. Keep this window open and running: if you need to restart roscore, use the command Ctrl+C to stop the process and then relaunch the file from step 4.

5. Open a new tab/window and run the following command locally:

rostopic pub /manip_servo_angles geometry_msgs/Vector3 "{x: 0.0, y: 0.0, z: 30.0}"

a. This will set the laser in horizontal position by publishing to the correct topic. Notice how the command is run locally, but the topic belongs to a node running on the robot. If the laser does not move, use Ctrl+C and then try re-running again the command.

DRIVE MANUALLY:

1. Disconnect the power cable from the robot.

1. Open a new terminal tab and start the manual drive script with the following command:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

2. Follow the instructions displayed on the screen.
a. The given starting speed is very high so it is a good idea to lower it, for example to 0.1

3. Open a new terminal window and run the following command:

rostopic echo /RosAria/cmd_vel

a. This will display data from the topic /RosAria/cmd_vel, corresponding to low level control of the robot's wheels.

RVIZ APPLICATION:

Rviz is used to visualize the data the robot produces, such as camera and laser scanner feeds. When adding new displays, it is important to rename them exactly as instructed here. The topic names need to correspond to the ROS topics, otherwise the displays will not work.

1. Run the program:

rosrun rviz rviz

1. Change Fixed Frame listed on the left side of the screen under Global Options to map.

2. You can add new displays with Add button at the left bottom of the window. You can ignore any error/warning messages for now.
a. Add TF
i. odom frame corresponds to the initial position of the robot, right after it has been started.
b. Add LaserScan and rename its topic to /scan
i. Make sure you change the topic name and not the display's name.
ii. Since the node providing the topic has already been started, you can select it from the drop down menu.
c. Add Map and rename its topic to /map
d. Optionally add Camera and rename its topic to camera/rgb/image_rect_color
e. Optionally add PointCloud2 and rename its topic to camera/depth/points or camera/depth_registered/points
i. If you add it, run the following command as well in a new terminal to adjust the RGB-D's pose:

rostopic pub /ptu_servo_angles geometry_msgs/Vector3 “{x: 0.0, y: 105.0, z: 85.0}”

SLAM:

SLAM generates an occupancy grid from the laser scan feed in real time. This process is run on the pioneer robot and you can monitor it with RVIZ.

1. In a new terminal tab/window, open a new ssh connection to robot
(ssh pioneer@192.168.1.110)and run:

rosrun gmapping slam_gmapping

2. All the errors should disappear and you should see all displays correctly.

3. If you experience decreased performance and data transmission for SLAM map you can disable the optional displays.

4. Drive around the robot manually to acquire as detailed map as you can.
a. You can see the currently generated map in Rviz.

5. Save the current map as a .PGM image to your working folder by running (in a new terminal):

rosrun map_server map_saver

6. You can also use recorded data for slam.
a. Start recording with: rosbag record –O mylaserdata /scan /tf
b. Stop recording by terminating the program with Ctrl+C

c. Play the bag contents with: rosbag play --clock mylaserdata.bag
Hint: check out rqt_bag

[image:]Fig. 3. The map should look something like this.

PATH PLANNING:

For this task there are two options:
A. Follow the guide and use the navigation stack as described next in order to implement a working path planner.
B. Implement/use a different path planner than described in this guide. A working path planner will reflect on your grade as discussed in the lecture. It is, however, recommended to follow this guide and implement a working path planner, after which you may try and implement a different one.

Until now you have used pre-installed packages in the ROS environment. Next, you will learn how to create your working space, “install” new packages and run them.

1. The latest ROS versions use a catkin workspace structure. First create your own catkin working space under your home directory.
a. ROS wiki will help you in this: http://wiki.ros.org/catkin/Tutorials/create_a_workspace

1. Also, run catkin_make to make sure you have correctly created your workspace.

2. Next, you will need to download all the required packages.
a. First, go to:

http://wiki.ros.org/move_base

i. From there, open the link from “Source” (to github) and download the branch called “indigo-devel”.
https://github.com/ros-planning/navigation/tree/indigo-devel
ii. Copy its contents to your /Home/catkin_ws/src/
iii. Run again catkin_make from within your catkin workspace.
iv. Lastly, remember to source your newly created workspace:

source devel/setup.bash

v. You will need to source your setup in every new terminal you open.

3. First, you will need to create the required launch files, which automate the starting and parametrization of the node. Make sure the formatting in your files follow the one presented here (especially the spaces at the beginning of lines). We will use catkin_create_pkg to create the folder (package) containing the launch and configuration files. Navigate to catkin_ws/src/ and run (replace * with your group number):

catkin_create_pkg group* catkin roscpp move_base

4. Inside the package folder, create the files as described next.
(HINT: COPY TEXTS TO THESE FILES DIRECTLY FROM THIS WORD DOCUMENT BY USING FOR EXAMPLE GEDIT (OR PICO). YOU CAN CREATE THOSE IN ADVANCE WITH ANY TEXT EDITOR AND THEN JUST MOVE THEM TO THE YOUR FOLDER)

6. Create a file named move_base.launch and fill it up with the following text. Note that you should replace bold words with the same name as used in the previous step.

<launch>
	<!--- Run AMCL -->
	<include file="$(find group*)/amcl.launch" />
	
	<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
		<remap from="/cmd_vel" to="/RosAria/cmd_vel" />
		<rosparam file="$(find group*)/costmap_common_params.yaml" command="load" ns="global_costmap" />
		<rosparam file="$(find group*)/costmap_common_params.yaml" command="load" ns="local_costmap" />
		<rosparam file="$(find group*)/local_costmap_params.yaml" command="load" />
		<rosparam file="$(find group*)/global_costmap_params.yaml" command="load" />
		<rosparam file="$(find group*)/base_local_planner_params.yaml" command="load" />
		<param name="base_global_planner" type="string" value="navfn/NavfnROS" />
		<param name="conservative_reset_dist" type="double" value="3.0" />
		<param name="controller_frequency" type="double" value="10.0" />
	</node>

</launch>

e. Create a file named amcl.launch and fill it up with:

<launch>
	<node pkg="amcl" type="amcl" name="amcl">
		<!-- Publish scans from best pose at a max of 10 Hz -->
		<param name="odom_model_type" value="diff"/>
		<param name="odom_alpha5" value="0.1"/>
		<param name="transform_tolerance" value="0.2" />
		<param name="gui_publish_rate" value="10.0"/>
		<param name="laser_max_beams" value="30"/>
		<param name="min_particles" value="500"/>
		<param name="max_particles" value="5000"/>
		<param name="kld_err" value="0.05"/>
		<param name="kld_z" value="0.99"/>
		<param name="odom_alpha1" value="0.2"/>
		<param name="odom_alpha2" value="0.2"/>
		<!-- translation std dev, m -->
		<param name="odom_alpha3" value="0.8"/>
		<param name="odom_alpha4" value="0.2"/>
		<param name="laser_z_hit" value="0.5"/>
		<param name="laser_z_short" value="0.05"/>
		<param name="laser_z_max" value="0.05"/>
		<param name="laser_z_rand" value="0.5"/>
		<param name="laser_sigma_hit" value="0.2"/>
		<param name="laser_lambda_short" value="0.1"/>
		<param name="laser_lambda_short" value="0.1"/>
		<param name="laser_model_type" value="likelihood_field"/>
		<!-- <param name="laser_model_type" value="beam"/> -->
		<param name="laser_likelihood_max_dist" value="2.0"/>
		<param name="update_min_d" value="0.2"/>
		<param name="update_min_a" value="0.5"/>
		<param name="odom_frame_id" value="odom"/>
		<param name="resample_interval" value="1"/>
		<param name="transform_tolerance" value="0.1"/>
		<param name="recovery_alpha_slow" value="0.0"/>
		<param name="recovery_alpha_fast" value="0.0"/>
	</node>
</launch>

f. Create a file named base_local_planner_params.yaml and fill it with:

TrajectoryPlannerROS:
 max_vel_x: 0.3
 min_vel_x: 0.05
 max_rotational_vel: 0.4
 min_in_place_rotational_vel: 0.3
 escape_vel: -0.1

 sim_time: 2.0
 path_distance_bias: 0.6
 goal_distance_bias: 0.6

 acc_lim_th: 1.2
 acc_lim_x: 1.0
 acc_lim_y: 1.0
 holonomic_robot: false

g. Create a file named costmap_common_params.yaml and fill it with:

obstacle_range: 2.5
raytrace_range: 3.0
inflation_radius: 0.35

#---standard pioneer footprint---
#---(in meters)---
footprint: [[0.3302, -0.0508], [0.254, -0.0508], [0.254, -0.254], [-0.254, -0.254], [-0.254, 0.254], [0.254, 0.254], [0.254, 0.0508], [0.3302, 0.0508]]

transform_tolerance: 0.2
map_type: costmap

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true, expected_update_rate: 0.2}

h. Create a file named global_costmap_params.yaml and fill it with:

global_costmap:
 global_frame: /map
 robot_base_frame: base_link
 update_frequency: 2.0
 publish_frequency: 10.0
 static_map: true

i. Create a file named local_costmap_params.yaml and fill it with:

local_costmap:
 global_frame: /odom
 robot_base_frame: base_link
 update_frequency: 5.0
 publish_frequency: 10.0
 static_map: false
 rolling_window: true
 width: 5.0
 height: 5.0
 resolution: 0.025

[bookmark: _GoBack]
5. Navigate back to catkin_ws and run catkin_make.
Remember to source your setup: source devel/setup.bash

6. Launch your newly created files with:

roslaunch group* move_base.launch

7. Add the following displays in RViz:
a. Add a new Map display and change its topic to

/move_base/global_costmap/costmap

i. You can change the Color Scheme to costmap as well.

b. Add a Path and change its topic to /move_base/NavfnROS/plan.
c. Add an Odometry display and change its topic to /RosAria/pose.

8. In a new terminal window/tab, run:

rosrun rqt_tf_tree rqt_tf_tree

a. This will present you the current transformation frames configuration tree of the robot. Use the button on the top-right to save it to your folder and include it in your report.

MOTION CONTROL:

The motion control introduced here is the base motion control. All path planning algorithms feed their waypoints to this motion control module. You can test this module via RVIZ interface.

1. Give first a 2D Pose Estimate to the robot (initial pose of the robot at start-up) by using the RViz tab.

10. Now you can give a target pose for the robot by drawing a vector arrow in RViz using the tab 2D Nav Goal. The robot should react immediately to the command. You should see the trajectory

11. If you run into problems, you can debug the process by testing the Twist connection with manual drive. You may also want to echo the nodes /move_base_simple/goal and RosAria/cmd_vel to ensure messages are passed correctly.

12. Lastly, run the following command, which will present you with all the active nodes inside ROS:

rosrun rqt_graph rqt_graph

a. Save the image and include it in your report with a proper description. To save it as an image, use the “blank” button on the top right corner.

Useful commands:
	rostopic list		 list all active nodes
	rosnode info /<name>	 display node information
	rostopic echo /<name>	 listen to node
	rospack find <name> 	 find out if a specific rospack 					 exists
image3.png

image1.jpg

image2.jpg

