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Introduction
Do we need to localize or not?

= To go from A to B, does the robot need to know

where it is?
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Introduction
Do we need to localize or not?

= How to navigate between A and B
= navigation without hitting obstacles

= detection of goal location -
= Possible by following always the left wall \l
= However, how to detect that the goal is reached L

: |
E Of 4

_ g__\
O [;l__ . FJ:
i a;_ ;Ll

5 - Localization and Mapping L={_) ETH:::i-




5

Introduction
Do we need to localize or not?

= Following the left wall is an example of “behavior
based navigation”

= |t can work in some environments but not in all
= With which accuracy do we reach the goal?
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Introduction
Do we need to localize or not?

= As opposed to behavior based navigation is “map based navigation”

= Assuming that the map is known, at every time step the robot has to know where it is.
How?
= |f we know the start position, we can use wheel odometry or dead reckoning. Is
this enough? What else can we use?

= But how do we represent the map for the robot?
= And how do we represent the position of the robot in the map?
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Introduction
Definitions

= Global localization
= The robot is not told its initial position
= |[ts position must be estimated from scratch

= Position Tracking

= A robot knows its initial position and “only” has to accommodate small errors in
its odometry as it moves

&
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Introduction
How to localize?

= Localization based on external sensors, beacons or landmarks

= Odometry

= Map Based Localization (without external sensors or artificial landmarks. Just use
robot onboard sensors)

= Example: Probabilistic Map Based Localization

5 - Localization and Mapping ETH:::i-



Introduction
Beacon Based Localization

Triangulation

= Ex 1: Poles with highly reflective surface and a laser for detecting them

= Ex 2: Coloured beacons and an omnidirectional camera for detecting
them (example: RoboCup or autonomous robots in tennis fields)
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Introduction
Map-based localization

| position "
o _ - Position Update
F ) ! (Estimation?)
rediction o
Encoder - Position » bmatCh‘?d
—— (e.g.odometry) U observations
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Map predicted observation .
data base L o — — — - t Matchlng

* Odometry, Dead Reckoning

A raw sensor data or
| extracted features

: Observation \
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Introduction
Map-based localization

= Consider a mobile robot moving in a known environment.
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Introduction
Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location, it can keep track of its motion
using odometry.

v
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Introduction
Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location, it can keep track of its motion
using odometry.

»
»
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Introduction
Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location, it can keep track of its motion
using odometry.

»
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Introduction
Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location, it can keep track of its motion
using odometry.

= The robot makes an observation and updates its position and uncertainty
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Introduction
Map-based localization

Ingredients

= Position estimation (odometry)
= Error (uncertainty) propagation
= Position representation

= Map representation

4 - Perception: Sensor Overview ETH:::i-
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Odometry

= Definition
= Dead reckoning (also deduced reckoning or odometry) is the process of

calculating vehicle's current position by using a previously determined position -
and estimated speeds over the elapsed time

= Robot motion is recovered by integrating proprioceptive sensor velocities
readings
= Pros: Straightforward
= Cons: Errors are integrated -> unbound

= Heading sensors (e.g., gyroscope) help to reduce the accumulated errors
but drift remains

5 - Localization and Mapping ETH:::i-



Odometry

X
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Odometry
Wheel Odometry
= Kinematics
/Y[
A
| z‘([
| ‘N . .y
/ ~ _ | Ascos(8+—) This term comes from the application
Xi_4 of the Instantaneous Center of Rotation
. : A6
X = (X, U)=|Y |+ Assm(6’+7)
_Ht—l_ AG _
< Can you demonstrate these equations?
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2
AQ AS, —As,
b
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Odometry

= Error model
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20 Odometry

Growth of Pose uncertainty for Straight Line
Movement

= Note: Errors perpendicular to the direction of movement are growing much faster!

5 - Localization .
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2 Odometry
Growth of Pose uncertainty for Movement on a
Circle

= Note: Errors ellipse does not remain perpendicular to the direction of movement!

Error Propagation in Odometry
I I I I

E’HZUrich
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Odometry
Example of non-Gaussian error model

= Note: Errors are not shaped like ellipses!

Courtesy Al Lab, Stanford

[Fox, Thrun, Burgard, Dellaert, 2000]
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Odometry
Error sources

Deterministicﬁ Non-Deterministic

(Systematic) (Non-Systematic)

= Deterministic errors can be eliminated by proper calibration of the system.

= Non-Deterministic errors are random errors. They have to be described by error
models and will always lead to uncertain position estimate.

= Major Error Sources in Odometry:
= Limited resolution during integration (time increments, measurement resolution)
Misalignment of the wheels (deterministic)
Unequal wheel diameter (deterministic)
Variation in the contact point of the wheel (non deterministic)
Unequal floor contact (slippage, non planar ...) (non deterministic)

5 - Localization and Mapping ETH:::i-
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Belief Representation

@ a A
= a) Continuous map g /\
with single hypothesis , >
probability distribution position x
b C;A
= b) Continuous map §
with multiple hypotheses 3
probability distribution | A | -

position x
_ _ ¢ ad
= ¢) Discretized map g
with probability distribution 3
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=L Belief Representation
Single-hypothesis Belief — Continuous Line-Map

a)
robot position =<
o =]
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R
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" Belief Representation
Single-hypothesis Belief — Grid and Topological Map

5 - Localization and Mapping ETH::: i



Belief Representation
Grid-based Representation - Multi Hypothesis

= Grid size around 20 cm?.

Courtesy of W. Burgard

nluln | nlirin

nluln

Path of the robot Belief states at positions 2, 3 and 4
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Map Representation
Continuous Line-Based

a) Architecture map
b) Representation with set of finite or infinite lines

], I

(a)
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Map Representation
Exact cell decomposition

= Exact cell decomposition - Polygons

5 - Localization and Mapping ETH:::i-
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Map Representation
Approximate cell decomposition

= Fixed cell decomposition
= Narrow passages disappear

5 - Localization and Mapping ETH::: i
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Map Representation
Adaptive cell decomposition

= Exercise: how do we implement an adaptive cell decomposition
algorithm?

5 - Localization and Mapping ETH:::i-
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Map Representation
Occupancy grid

= Fixed cell decomposition: occupancy grid example

= [n occupancy grids, each cell may have a counter where 0O indicates that the cell has not
been hit by any ranging measurements and therefore it is likely free-space. As the number
of ranging strikes increases, the cell value is incremented and, above a certain threshold,

the cell is deemed to be an obstacle -
= The values of the cells are discounted when a ranging strike travels through the cell. This
allows us to represent “transient” (dynamic) obstacles

' Courtesy of S. Thrun

Er"’ZUrich
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Map Representation
Topological map

= A topological map represents the environment as a
graph with nodes and edges.

= Nodes correspond to spaces D
= Edge correspond to physical connections between nodes
€
= Topological maps lack scale and
distances, but topological
. | . ©)
relationships (e.g., left, right, etc.)
are mantained
N
| node O—H—®
10N
(location) \
edge
(connectivity)
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Map Representation
Topological map
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Probabilistic Map Based Localization

Probabilistic Map
Based Localization

4 - Perception: Sensor Overview ETH:::i-
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Probabilistic Map Based Localization
Outline

= Definition and illustration of probabilistic map-based localization

= Two solutions
= Markov localization (today)
= Kalman filter localization (next lecture)

Further references:
Thrun, Fox, Burgard, “Probabilistic Robotics,” MIT Press, 2005.

5 - Localization and Mapping
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Probabilistic Map Based Localization
The problem

= Consider a mobile robot moving in a known environment.

= As it starts to move (say from a precisely known location) it can keep track
of its location using wheel odometry.

= However, after a certain movement the robot will get very uncertain about
Its position => Thus, it should update its position by making “observations”
of the environment

= Observations lead to an estimate of the robot position which can then be
fused with the odometric estimation to get the best possible update of the
actual robot’s position.

\
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Probabilistic Map Based Localization
Working Principle: Improving belief state by moving

bel(x) o] =5 (eme)

The robot is placed somewhere in the
environment but is not told its location

p(z|x, M) 3 - fe)
The robot queries its sensors and finds it is !- W m H
next to a pillar 4L 4 i
A

v

The robot moves one meter forward. m m
To account for inherent noise in robot motion U wl il
the new belief is smoother

The robot queries its sensors and again it finds }
A

itself next to a pillar

Finally, it updates its belief by combining this
information with its previous belief

5 - Localization and Mapping ETH:::i-
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=8 Probabilistic Map Based Localization
Why a probabillistic approach for mobile robot localization?

= Because the data coming from the robot sensors are affected by
measurement errors, we can only compute the probability that the robot is
In a given configuration. .

= The key idea in probabilistic robotics is to represent uncertainty using
probability theory: instead of giving a single best estimate of the current

robot configuration, probabilistic robotics represents the robot
configuration as a probability distribution over the all possible robot poses.

This probabillity is called belief.

bel(x)

E'HZUrich
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Description of the probabilistic localization problem
Action and perception updates

* In robot localization, we distinguish two update steps:

1. ACTION (or prediction) update:

« the robot moves and estimates its position through its proprioceptive sensors.
During this step, the robot uncertainty grows.

1 t
Xp X X, a)

2. PERCEPTION (or meausurement) update:

» the robot makes an observation using its exteroceptive sensors and correct its position by
opportunely combining its belief before the observation with the probability of making exactly that
observation.

During this step, the robot uncertainty shrinks.

rF Y

Y

| | |

L1
L 1T 1
A Probability of 1 J T I 1

making this oSy d | I |
observation [} 1 ) | - 1

I .

! i Robot belief C 1T 1
! 3 before the ——

/ Vol e observation 1
i v i heS | 1 |
4 o o

o - - F
. . :\_J' I‘\‘",.) :\_
5 - Localization anua viapping 2 - 2 an ETH:::i-



Solution to the probabilistic localization problem

A probabilistic approach to the mobile robot
localization problem is a method able to compute the
probability distribution of the robot configuration
during each Action and Perception step.

As, + As cos((&HAS{bAq )
. . . x _
The ingredients are: § = oy .8, Asy) - H LA, ;Awsm(eJrAs;bAS/)
1. The initial probability distribution p(X)t:O 0 As s,
b ]
2. The statistical error model of the proprioceptive ‘
sensors (e.g. wheel encoders)
k|As| 0
4' 2,
o _ 0 kj|As)
3. The statistical error model of the exteroceptive
sensors (e.g. laser, sonar, camera) ’
4.  Map of the environment o e
(If the map is not known a priori then the robot needs to build a .
map of the environment and then localize in it. This is called “)/\
SLAM, Simultaneous Localization And Mapping) e A W—
Ultrasound. Laser range-finder.

5 - Localization and Mapping ETH:::i-
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Solution to the probabilistic localization problem

How do we solve the Action and Perception updates?

= Action update uses the Theorem of Total probability

v)p(y)dy

p(x) = |p(x
Y

= Perception update uses the Bayes rule

_ p(y|x)p(x)
P(y)

y)

p(x

(because of the use of the Bayes rule, probabilistic localization is also
called Bayesian localization)

5 - Localization and Mapping ETH:::i.



Solution to the probabilistic localization problem
Action update

* In this phase the robot estimates its current position bel(x,) based on
the knowledge of the previous position bel(x, ;) and the odometric input U,
(The hypothesis that the current robot position depends only on the
previous position and the odometric input is called Markov assumption)

= Using the Theorem of Total probability, we compute the robot’s belief after
the motion as

bel(x,) = Jp(xr| u,x, )bel(x, )dx,

which can be written as a cross-correlation (sliding inner product)

bel(x,) = p(x,|u,x,_)*bel(x, )

5 - Localization and Mapping ETH:::i-



Solution to the probabilistic localization problem
Perception update

= In this phase the robot corrects its previous position (i.e. its former belief)
by opportunely combining it with the information from its exteroceptive
sensors

P(z, | %) P(X)
p(z,)

4 .
bel(x,) =n- p(z, | X )bel(X)

where 7 is a normalization factor which makes the probability integrate to 1.

p(Xt | Zt) —

5 - Localization and Mapping ETH:::i.
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Solution to the probabilistic localization problem
The algorithm

for all X, do
bel(x,) = IP(-‘}\”r x,_pbel(x,_,)dx,_, (prediction update)

bel(x,) = np(z,|x, M)bel(x,) (measurement update)

endfor
return bel(x,)

This localization algorithm is also called Bayes filter

5 - Localization and Mapping ETH:::i-



2 |llustration of probabilistic bap based localization

Initial probability distribution




&l |llustration of probabilistic bap based localization

Initial probability distribution

Perception update
bel (%) =7- p(z, | x)bel (x,)




78 |llustration of probabilistic bap based localization

Initial probability distribution

Perception update
bel (%) =7- p(z, | x)bel (x,)

bel(x) v T == c)

Action update bel(x,) = p(x,|u,x, *belx, ) || |




&0 lllustration of probabilistic bap based localization

Initial probability distribution

Perception update
e bel(x)
bel (%) =7- p(z, | x)bel (x,)
A A A R
bel(x) T Tz “ ¢)
ACtIOFl Update Z;I(x,) = p(x[|u[’ xrfl)*bel(xril) 4 ‘ i \’(
#_;
pzlx M) T “
p(z %) 4 ( l
I wl |
A A A s
. - bel(x)
Perception update bel(x)=7-p(z, | x)bel(x) * ‘
5 - Localization and Mapping . — e S




Markov versus Kalman localization

Two approaches exist to represent the probability distribution and to compute the Total Probability
and Bayes Rule during the Action and Perception phases

* The configuration space is divided into
many cells. The configuration space of a
robot moving on a plane is 3D dimensional
(x,y,0). Each cell contains the probability of
the robot to be in that cell.

* The probability distribution of the sensors
model is also discrete.

* During Action and Perception, all the cells

are updated. Therefore, the computational
cost is very high

5 - Localization and Mapping

» The probability distribution of both the
robot configuration and the sensor model is
assumed to be continuous and Gaussian!

* Since a Gaussian distribution is only
described by its mean value p and
covariance 2, we need only to update u and
2 Therefore the computational cost is

very low!

E’HZUrich



Kalman Filter Localization
ey Markov versus Kalman localization

PROS PROS
= |ocalization starting from any unknown = Tracks the robot and is inherently very
position precise and efficient

= recovers from ambiguous situation

CONS CONS

= However, to update the probability of all = |f the uncertainty of the robot becomes to
positions within the whole state space at large (e.g. collision with an object) the
any time requires a discrete representation  Kalman filter will fail and the position is
of the space (grid). The required memory definitively lost

and calculation power can thus become
very important if a fine grid is used.

9 - Localization II ETH::: i



Lecture 10 — Introduction

Simultaneous Localization and Mapping

What is SLAM?



4 Lecture 10 — Introduction

The chicken and egg problem

= An unbiased map is necessary for localizing the robot

Pure localization with a known map.
SLAM: no a priori knowledge of the robot’s workspace

= An accurate pose estimate is necessary for building a map of the environment

Mapping with known robot poses.
SLAM: the robot poses have to be estimated along the way

— —
@ dg — @ dg —
Localization using satellite images Helicopter pose given by Leica tracker
[Senlet and Elgammal, ICRA 2012] Video courtesy of Simon Lynen

= SLAM: one of the greatest challenges in probabilistic robotics



4 Lecture 10 — SLAM: How to

How to do SLAM

= Use internal representations for
= the positions of landmarks (: map)
= the camera parameters

= Assumption: Robot’s uncertainty
at starting position is zero

Start: robot has zero uncertainty

E'H Ziirich



Lecture 10 — SLAM: How to

How to do SLAM

/On every frame:

= Measure

\

-

First measurement of feature A

ETH:i:ic




Lecture 10 — SLAM: How to

How to do SLAM

= The robot observes a feature
which is mapped with an
uncertainty related to the
measurement model

/On every frame:

C Update the internal representations/




10 Lecture 10 — SLAM: How to

How to do SLAM

= As the robot moves, its pose
uncertainty increases, obeying
the robot’s motion model.

-
On every frame:
= Predict how the robot has moved

~

_____
____________
-’

Robot moves forwards: uncertainty grows

E’H Ziirich




11 Lecture 10 — SLAM: How to

How to do SLAM

= Robot observes two new
features.

/On every frame:

= Measure

\

_____
____________
,

Robot makes first measurements of B & C

ETH:i:ic




12 Lecture 10 — SLAM: How to

How to do SLAM

= Their position uncertainty results
from the combination of the
measurement error with the robot
pose uncertainty.

= map becomes correlated with
the robot pose estimate.

/On every frame:

C Update the internal representations/

_____
____________
,

Robot makes first measurements of B & C

E’H Ziirich




13 Lecture 10 — SLAM: How to

How to do SLAM

= Robot moves again and its
uncertainty increases (motion
model)

-
On every frame:
= Predict how the robot has moved

~

Robot moves again: uncertainty grows more

E'H Ziirich




14 Lecture 10 — SLAM: How to

How to do SLAM

= Robhot re-observes an old feature
= Loop closure detection

/On every frame:

= Measure

\_ /

Robot re-measures A: “loop closure”




15 Lecture 10 — SLAM: How to

How to do SLAM

= Robot updates its position: the
resulting pose estimate becomes
correlated with the feature
location estimates.

= Robot’s uncertainty shrinks and
so does the uncertainty in the
rest of the map

/On every frame:

C Update the internal representations/

e ——
- .o
~

Robot re-measures A: “loop closure”
uncertainty shrinks

E’H Ziirich
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Lecture 10 — SLAM methodologies

SLAM: Probabilistic Formulation

= Robot pose at time 7 : x, = Robot path up to this time: {x,, x,, ..., x,}

= Robot motion between time ¢-/ and ¢ : U, (control inputs / proprioceptive sensor
readings) @ Seqguence of robot relative motions: {uo, Uuj..., ut}

= The true map of the environment: {mo, mi,..., mN}

= At each time ¢ the robot makes measurements z;
= Set of all measurements (observations): {z,, z, ..., Z;}

= The Full SLAM problem: estimate the posterior
PXg. My | Zog U )

= The Online SLAM problem: estimate the posterior
pex,mo., | Zop,up., )
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Lecture 10 — SLAM methodologies

The Three SLAM paradigms

= Some of the most important approaches to SLAM:

= Extended Kalman Filter SLAM (EKF SLAM)
= Particle Filter SLAM (FAST SLAM) — tomorrow’s exercise

= GraphSLAM

E’H Ziirich



