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 SLAM stands for simultaneous localization and 

mapping

 The task of building a map while estimating 

the pose of the robot relative to this map

 Why is SLAM hard?

Chicken and egg problem: 

a map is needed to localize the robot and 

a pose estimate is needed to build a map

The SLAM Problem
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Given:

 The robot’s 
controls

 Observations of 
nearby features

Estimate:

 Map of features

 Path of the 
robot

The SLAM Problem

A robot moving though an unknown, static environment
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

 In the real world, the mapping between 
observations and landmarks is unknown

 Picking wrong data associations can have 
catastrophic consequences

 Pose error correlates data associations

Robot pose

uncertainty
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Data Association Problem

 A data association is an assignment of 
observations to landmarks

 In general there are more than 
(n observations, m landmarks) possible 
associations

 Also called “assignment problem”
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 Represent belief by random samples

 Estimation of non-Gaussian, nonlinear processes

 Sampling Importance Resampling (SIR) principle

 Draw the new generation of particles

 Assign an importance weight to each particle

 Resampling 

 Typical application scenarios are 

tracking, localization, …

Particle Filters
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Particle Filter algorithm 1/3
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Particle Filter algorithm 2/3
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Particle Filter algorithm 3/3
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 A particle filter can be used to solve both problems

 Localization: state space < x, y, >

 SLAM: state space < x, y, , map>

 for landmark maps = < l1, l2, …, lm>

 for grid maps = < c11, c12, …, c1n, c21, …, cnm>

 Problem: The number of particles needed to 

represent a posterior grows exponentially with 

the dimension of the state space!

Localization vs. SLAM
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 Is there a dependency between the dimensions of 

the state space?

 If so, can we use the dependency to solve the 

problem more efficiently?

Dependencies 
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 Is there a dependency between the dimensions of 

the state space?

 If so, can we use the dependency to solve the 

problem more efficiently?

 In the SLAM context

 The map depends on the poses of the robot.

 We know how to build a map given the position 

of the sensor is known.

Dependencies



14

Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Factored Posterior (Landmarks)

SLAM posterior

Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Knowledge of the robot’s true path renders 

landmark positions conditionally independent

Mapping using Landmarks

. . .
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Factored Posterior

Robot path posterior

(localization problem) Conditionally 

independent 

landmark positions
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Rao-Blackwellization

 This factorization is also called Rao-Blackwellization

 Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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FastSLAM
 Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]

 Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)

 Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle

#2

Particle

N

…



FastSLAM algorithm, feature = 
landmark

20
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  Complexity

 Update robot particles 
based on control ut-1

 Incorporate observation zt

into Kalman filters

 Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle



25

Data Association Problem

 A robust SLAM must consider possible data 
associations 

 Potential data associations depend also 
on the pose of the robot 

 Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

 Data association is 
done on a per-particle 
basis

 Robot pose error is 
factored out of data 
association decisions
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Per-Particle Data Association

Was the observation

generated by the red

or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

 Two options for per-particle data association

 Pick the most probable match

 Pick an random association weighted by 
the observation likelihoods

 If the probability is too low, generate a new 
landmark
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Results – Victoria Park

 4 km traverse

 < 5 m RMS 
position error

 100 particles

Dataset courtesy of University of Sydney

Blue = GPS

Yellow = FastSLAM



29

Results – Data Association
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Results – Accuracy
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 Can we solve the SLAM problem if no pre-defined 

landmarks are available?

 Can we use the ideas of FastSLAM to build grid 

maps?

 As with landmarks, the map depends on the poses 

of the robot during data acquisition

 If the poses are known, grid-based mapping is easy 

(“mapping with known poses”)

Grid-based SLAM
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Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 

from the MCL part and apply 

mapping with known poses



MCL Monte Carlo Localization
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A Graphical Model of Rao-
Blackwellized Mapping
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Rao-Blackwellized Mapping

 Each particle represents a possible trajectory of 
the robot

 Each particle 

 maintains its own map and 

 updates it upon “mapping with known poses”

 Each particle survives with a probability 
proportional to the likelihood of the observations 
relative to its own map
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Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Occupancy grid Fast SLAM
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Problem

 Each map is quite big in case of grid maps

 Since each particle maintains its own map

 Therefore, one needs to keep the number 
of particles small

 Solution:
Compute better proposal distributions!

 Idea:
Improve the pose estimate before applying 
the particle filter
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Pose Correction Using Scan 
Matching

Maximize the likelihood of the i-th pose 
and map relative to the (i-1)-th pose 
and map

 )ˆ,|( )ˆ ,|( maxargˆ
111   tttttt
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t xuxpmxzpx
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robot motioncurrent measurement

map constructed so far
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Motion Model for Scan Matching

Raw Odometry

Scan Matching
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FastSLAM with Improved 
Odometry

 Scan-matching provides a locally 
consistent pose correction

 Pre-correct short odometry sequences 
using scan-matching and use them as 
input to FastSLAM

 Fewer particles are needed, since the 
error in the input in smaller

[Haehnel et al., 2003]
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Graphical Model for Mapping 
with Improved Odometry
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching

Loop Closure
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Further Improvements

 Improved proposals will lead to more 
accurate maps

 They can be achieved by adapting the proposal 
distribution according to the most recent 
observations

 Flexible re-sampling steps can further improve the 
accuracy.
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Improved Proposal

 The proposal adapts to the structure 
of the environment
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Selective Re-sampling

 Re-sampling is dangerous, since 
important samples might get lost
(particle depletion problem)

 In case of suboptimal proposal 
distributions re-sampling is 
necessary to achieve convergence.

 Key question: When should we re-
sample?
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Conclusion

 The ideas of FastSLAM can also be applied in the 
context of grid maps

 Utilizing accurate sensor observation leads to 
good proposals and highly efficient filters

 It is similar to scan-matching on a per-particle 
base

 The number of necessary particles and
re-sampling steps can seriously be reduced

 Improved versions of grid-based FastSLAM can 
handle larger environments than naïve 
implementations in “real time” since they need 
one order of magnitude fewer samples
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More Details on FastSLAM

 M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A 
factored solution to simultaneous localization and mapping, AAAI02

 D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient 
FastSLAM algorithm for generating maps of large-scale cyclic 
environments from raw laser range measurements, IROS03

 M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An 
Improved particle filtering algorithm for simultaneous localization 
and mapping that provably converges. IJCAI-2003

 G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based 
slam with rao-blackwellized particle filters by adaptive proposals 
and selective resampling, ICRA05

 A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultanous 
localization and mapping without predetermined landmarks, 
IJCAI03


