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 SLAM stands for simultaneous localization and 

mapping

 The task of building a map while estimating 

the pose of the robot relative to this map

 Why is SLAM hard?

Chicken and egg problem: 

a map is needed to localize the robot and 

a pose estimate is needed to build a map

The SLAM Problem
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Given:

 The robot’s 
controls

 Observations of 
nearby features

Estimate:

 Map of features

 Path of the 
robot

The SLAM Problem

A robot moving though an unknown, static environment
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

 In the real world, the mapping between 
observations and landmarks is unknown

 Picking wrong data associations can have 
catastrophic consequences

 Pose error correlates data associations

Robot pose

uncertainty
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Data Association Problem

 A data association is an assignment of 
observations to landmarks

 In general there are more than 
(n observations, m landmarks) possible 
associations

 Also called “assignment problem”
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 Represent belief by random samples

 Estimation of non-Gaussian, nonlinear processes

 Sampling Importance Resampling (SIR) principle

 Draw the new generation of particles

 Assign an importance weight to each particle

 Resampling 

 Typical application scenarios are 

tracking, localization, …

Particle Filters
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Particle Filter algorithm 1/3
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Particle Filter algorithm 2/3
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Particle Filter algorithm 3/3
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 A particle filter can be used to solve both problems

 Localization: state space < x, y, >

 SLAM: state space < x, y, , map>

 for landmark maps = < l1, l2, …, lm>

 for grid maps = < c11, c12, …, c1n, c21, …, cnm>

 Problem: The number of particles needed to 

represent a posterior grows exponentially with 

the dimension of the state space!

Localization vs. SLAM
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 Is there a dependency between the dimensions of 

the state space?

 If so, can we use the dependency to solve the 

problem more efficiently?

Dependencies 
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 Is there a dependency between the dimensions of 

the state space?

 If so, can we use the dependency to solve the 

problem more efficiently?

 In the SLAM context

 The map depends on the poses of the robot.

 We know how to build a map given the position 

of the sensor is known.

Dependencies
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Factored Posterior (Landmarks)

SLAM posterior

Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Knowledge of the robot’s true path renders 

landmark positions conditionally independent

Mapping using Landmarks

. . .
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Factored Posterior

Robot path posterior

(localization problem) Conditionally 

independent 

landmark positions
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Rao-Blackwellization

 This factorization is also called Rao-Blackwellization

 Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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FastSLAM
 Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]

 Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)

 Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle

#2

Particle

N

…



FastSLAM algorithm, feature = 
landmark
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  Complexity

 Update robot particles 
based on control ut-1

 Incorporate observation zt

into Kalman filters

 Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

 A robust SLAM must consider possible data 
associations 

 Potential data associations depend also 
on the pose of the robot 

 Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

 Data association is 
done on a per-particle 
basis

 Robot pose error is 
factored out of data 
association decisions
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Per-Particle Data Association

Was the observation

generated by the red

or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

 Two options for per-particle data association

 Pick the most probable match

 Pick an random association weighted by 
the observation likelihoods

 If the probability is too low, generate a new 
landmark
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Results – Victoria Park

 4 km traverse

 < 5 m RMS 
position error

 100 particles

Dataset courtesy of University of Sydney

Blue = GPS

Yellow = FastSLAM
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Results – Data Association
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Results – Accuracy



31

 Can we solve the SLAM problem if no pre-defined 

landmarks are available?

 Can we use the ideas of FastSLAM to build grid 

maps?

 As with landmarks, the map depends on the poses 

of the robot during data acquisition

 If the poses are known, grid-based mapping is easy 

(“mapping with known poses”)

Grid-based SLAM
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Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 

from the MCL part and apply 

mapping with known poses



MCL Monte Carlo Localization
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A Graphical Model of Rao-
Blackwellized Mapping
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Rao-Blackwellized Mapping

 Each particle represents a possible trajectory of 
the robot

 Each particle 

 maintains its own map and 

 updates it upon “mapping with known poses”

 Each particle survives with a probability 
proportional to the likelihood of the observations 
relative to its own map
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Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Occupancy grid Fast SLAM
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Problem

 Each map is quite big in case of grid maps

 Since each particle maintains its own map

 Therefore, one needs to keep the number 
of particles small

 Solution:
Compute better proposal distributions!

 Idea:
Improve the pose estimate before applying 
the particle filter
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Pose Correction Using Scan 
Matching

Maximize the likelihood of the i-th pose 
and map relative to the (i-1)-th pose 
and map

 )ˆ,|( )ˆ ,|( maxargˆ
111   tttttt

x
t xuxpmxzpx

t

robot motioncurrent measurement

map constructed so far
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Motion Model for Scan Matching

Raw Odometry

Scan Matching
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FastSLAM with Improved 
Odometry

 Scan-matching provides a locally 
consistent pose correction

 Pre-correct short odometry sequences 
using scan-matching and use them as 
input to FastSLAM

 Fewer particles are needed, since the 
error in the input in smaller

[Haehnel et al., 2003]
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Graphical Model for Mapping 
with Improved Odometry
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching

Loop Closure
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Further Improvements

 Improved proposals will lead to more 
accurate maps

 They can be achieved by adapting the proposal 
distribution according to the most recent 
observations

 Flexible re-sampling steps can further improve the 
accuracy.
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Improved Proposal

 The proposal adapts to the structure 
of the environment
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Selective Re-sampling

 Re-sampling is dangerous, since 
important samples might get lost
(particle depletion problem)

 In case of suboptimal proposal 
distributions re-sampling is 
necessary to achieve convergence.

 Key question: When should we re-
sample?
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Conclusion

 The ideas of FastSLAM can also be applied in the 
context of grid maps

 Utilizing accurate sensor observation leads to 
good proposals and highly efficient filters

 It is similar to scan-matching on a per-particle 
base

 The number of necessary particles and
re-sampling steps can seriously be reduced

 Improved versions of grid-based FastSLAM can 
handle larger environments than naïve 
implementations in “real time” since they need 
one order of magnitude fewer samples
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