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The SLAM Problem

" SLAM stands for simultaneous localization and
mapping

" The task of building a map while estimating
the pose of the robot relative to this map

" Why is SLAM hard?
Chicken and egg problem:
a map is needed to localize the robot and
a pose estimate is needed to build a map



The SLAM Problem

A robot moving though an unknown, static environment

Given: W

= The robot’s
controls

= Observations of ,.
nearby features |

Estimate:

= Map of features

= Path of the .
robot 3




Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map



Why is SLAM a hard problem?

o ¥
@) I
3 I
\\ |
A\ /
\ ! /

o'\Robot pose/'o

uncertainty

O
/

/
/

¥ * ¥ &

= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations



Data Association Problem
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= A data association is an assignment of
observations to landmarks
T

= In general there are more than (m)

(n observations, m landmarks) possible
associations

= Also called “assignment problem”
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Particle Filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes

Sampling Importance Resampling (SIR) principle
" Draw the new generation of particles

" Assign an importance weight to each particle
" Resampling

Typical application scenarios are
tracking, localization, ...



Particle Filter algorithm 1/3

Algqﬂthm Particle_filter(X;_, u;, z;):
Xt — r;ff. = @
form=1toM do

1]

Sampferf ~ p(zy | wg, ™)

lm] [n] )

wt = F(Ef- | L
endfor
form =1toM do

draw i with probability o« w"
10: add :3::?{?'] to X,

11; endfor
12; return A



Particle Filter algorithm 2/3

1. Line 4 generates a hypothetical state :1:£m] for time ¢ based on the particle
.EET1 and the control u;. The resulting sample is indexed by m, indicat-
ing that it is generated from the m-th particle in X;_,. This step involves
sampling from the state transition distribution p(z; | u;, z,—1). To imple-
ment this step, one needs to be able to sample from this distribution. The

set of particles obtained after M iterations is the filter’s representation of
E(It)

2. Line 5 calculates for each particle ;trffm] the so-called importance factor, de-

noted w,™. Importance factors are used to incorporate the measurement
z; into the particle set. The importance, thus, is the probability of the

measurement z: under the particle zim given by wi™ = p(z | ™). If
[rm]

we interpret w;  as the weight of a particle, the set of weighted particles
represents (in approximation) the Bayes filter posterior bel(x:).



Particle Filter algorithm 3/3

3. The real “trick” of the particle filter algorithm occurs in lines 8 through
11 in Table 4.3. These lines implemented what is known as resampling
or importance sampling. The algorithm draws with replacement M parti-
cles from the temporary set X;. The probability of drawing each particle
is given by its importance weight. Resampling transforms a particle set
of M particles into another particle set of the same size. By incorporat-
ing the importance weights into the resampling process, the distribution
of the particles change: Whereas before the resampling step, they were
distributed according to bel(z;), after the resampling they are distributed
(approximately) according to the posterior bel(z;) = n p(z | 2™ Nbel (z).
In fact, the resulting sample set usually possesses many duplicates, since
particles are drawn with replacement. More important are the particles
not contained in A;: Those tend to be the particles with lower importance
weights.
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Localization vs. SLAM

A particle filter can be used to solve both problems
Localization: state space <x, y, 6>

SLAM: state space <x, y, 6 map>
® for landmark maps = </,, I,, ..., [,>
" for grid maps = <Cyy, Cy5, .-y C1ny C21y ooy Com>

Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!
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Dependencies

" [s there a dependency between the dimensions of
the state space?

" [f so, can we use the dependency to solve the
problem more efficiently?
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Dependencies

" [s there a dependency between the dimensions of
the state space?

" [f so, can we use the dependency to solve the
problem more efficiently?

" In the SLAM context
" The map depends on the poses of the robot.

" We know how to build a map given the position
of the sensor is known.
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Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(il?l:tall:m ‘ Zl:tauo:t—l) —
p(x1:¢ | 21:6,u0t—1) PU1:m | ©1:4, 21:¢)

Factorization first introduced by Murphy in 1999 14



Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(il?l:tall:m ‘ Zl:tauo:t—l) —
I p(x1:¢ | 21:6,u0t—1) PU1:m | ©1:4, 21:¢)

SLAM posterior T
Robot path posterior

landmark positions
Does this help to solve the problem?

Factorization first introduced by Murphy in 1999 15



Mapping using Landmarks

Landmark 1 — @
observations — 9 9
Robot poses — “ ° Q @ C i e

awos () NG
Landmark 2 — @

Knowledge of the robot’s true path renders

landmark positions conditionally independent |



Factored Posterior

p(x1:4,l1:m ’ Z1:ts uO:t—l)

— p(ml:t | Zl:tauo:t—l) 'p(ll:m | wl:tazlit)
M

= p(z14 ] 21:6uv0—1) " |] o | 214, 21:¢)

Lo |
(o o
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Rao-Blackwellization

P(z1:4,l1m | 214 U0—1) =
M

p(T1:¢ | 214, u0:e—1) - H p(l; | T1:¢, 21:¢)
1=1

® This factorization is also called Rao-Blackwellization

" Given that the second term can be computed
efficiently, particle filtering becomes possible!
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FastSLAM

" Rao-Blackwellized particle filtering based on
landmarks  [Montemerlo et al., 2002]

" Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

" Each particle therefore has to maintain M EKFs

PamCIe - Landmark 1 § Landmark 2

PamCIe - Landmark 1 § Landmark 2 Landmark M

Landmark M

Pa”'C'e - Landmark 1 | Landmark 2 @ Landmark M



FastSLAM algorithm, feature =
landmark

Do the following M times:

— Retrieval. Retrieve a pose a:l[gk_]l from the particle set Y;_;.

~ Prediction. Sample a new pose :L'E.k] ~ p(xy | x][tk_]l, Ut ).

— Measurement update. For each observed feature z; identify the
correspondence j for the measurement z;, and incorporate the
measurement 2! into the corresponding EKF, by updating the mean
uﬁ] and covariance ngg |
— Importance weight. Calculate the importance weight w!*! for the

new particle.

Resampling. Sample, with replacement, M particles, where each
particle is sampled with a probability proportional to w!®.
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FastSLAM - Action Update

Particle #1

Particle #2

Particle #3

Ca

Landmark #1
Filter

Landmark #2
Filter

21



FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

[

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

O - o
Cau g
N5,

[

Weight = 0.8

Weight =0.4

Weight = 0.1
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FastSLAM Complexity

. Update I"ObOt partides Constant tgr)ngble)r particle

based on control u,_;

» Incorporate observation z, ~ O(N*log(M))
into Kalman filters -0g time per particie

» Resample particle set O(N-log(M))

Log time per particle

N = Number of particles O(N’|OQ(M))

M = Number of map features Log time per particle
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Data Association Problem

= Which observation belongs to which landmark?

XF\Q/X%\
1 /Q\Xlg

&

= A robust SLAM must consider possible data
associations

= Potential data associations depend also
on the pose of the robot
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Multi-Hypothesis Data Association

= Data association is
done on a per-particle Ve
basis

= Robot pose error is L
factored out of data =~ };_.Q
association decisions
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Per-Particle Data Association

Cx

Was the observation

. V7

generated by the red

.

7

or the blue landmark?

P(observation

red) =0.3

P(observation|blue) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick an random association weighted by

the observation likelihoods

= If the probability is too low, generate a new

landmark
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Results - Victoria Park

= 4 km traverse

= < 5 mRMS
position error

= 100 particles

\:
.....

Blue = GPS
Yellow = FastSLAM

P ~
Dataset courtesy of University of Sydney 28



Results — Data Association

Comparison of FastSLAM and EKF Given Motion Ambiguity
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Results — Accuracy

Accuracy of FastSLAM vs. the EKF on Simulated Data
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Grid-based SLAM

Can we solve the SLAM problem if no pre-defined
landmarks are available?

Can we use the ideas of FastSLAM to build grid
maps?

As with landmarks, the map depends on the poses
of the robot during data acquisition

If the poses are known, grid-based mapping is easy
(“mapping with known poses”)
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Rao-Blackwellization

poses map observations & movements

SN

p(x1:,m | 214, UQ:¢—1) =
plx1:4 | 214, u0t—1) - P(M | 14, 21:¢)

Factorization first introduced by Murphy in 1999 32



Rao-Blackwellization

poses map observations & movements

SN

p(x1:4, M | 214, U0 t—1) =
I p(x1:¢ | 214, u0¢—1) - P(M | 14, 21:¢)

SLAM posterior ]

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999 33



Rao-Blackwellization

p(azl;t,m ‘ Zl:tauOZt—l) —
p(mlzt ‘ Zl:tauo:t—l) - p(m ‘ ml:tazlit)

Rt
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MCL Monte Carlo Localization
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Algorithm MCL(X;_1, uy, 2, m):

.v:t’t — r](’;_ — .ﬁ.'}
form =1to M do
;:._r:y”’% = sample_motion_model(u, = Fﬂ )

i L1t
u.',;m“] = measurement_model(z;, z; ],,m)

Xy = X + (iﬂgmlfwgn]>

endfor

form=1toM do
draw i with probability o w,"
add :x:l[j] to X

endfor

return A%
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A Graphical Model of Rao-
Blackwellized Mapping
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Rao-Blackwellized Mapping

= Each particle represents a possible trajectory of
the robot

= Each particle
= maintains its own map and
= updates it upon “*mapping with known poses”

= Each particle survives with a probability
proportional to the likelihood of the observations
relative to its own map
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Particle Filter Example

'*\ O\ ™
QU 3 particles —'—f =" S0
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map of particle 1 map of particle 3
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Occupancy grid Fast SLAM
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Problem

= Each map is quite big in case of grid maps
= Since each particle maintains its own map

= Therefore, one needs to keep the number
of particles small

= Solution:
Compute better proposal distributions!

= Idea:
Improve the pose estimate before applying
the particle filter
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Pose Correction Using Scan
Matching

Maximize the likelihood of the i-th pose
and map relative to the (i-1)-th pose
and map

X _argmax P(Z, | X, My) - POX Uy, X _1)}

/ /

current measurement robot motion

map constructed so far
41



Motion Model for Scan Matching

Raw Odometry
Scan Matching
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FastSLAM with Improved
Odometry

= Scan-matching provides a locally
consistent pose correction

= Pre-correct short odometry sequences
using scan-matching and use them as
iInput to FastSLAM

= Fewer particles are needed, since the
error in the input in smaller

[Haehnel et al., 2003] 43



Graphical Model for Mapping
with Improved Odometry
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FastSLAM with Scan-Matching




FastSLAM with Scan-Matching

Loop Closure
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Further Improvements

= Improved proposals will lead to more
accurate maps

= They can be achieved by adapting the proposal
distribution according to the most recent
observations

= Flexible re-sampling steps can further improve the
accuracy.
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Improved Proposal

= The proposal adapts to the structure
of the environment

| |




Selective Re-sampling

= Re-sampling is dangerous, since
important samples might get lost
(particle depletion problem)

= In case of suboptimal proposal
distributions re-sampling is

necessary to achieve convergence.

= Key question: When should we re-
sample?
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Conclusion

The ideas of FastSLAM can also be applied in the
context of grid maps

Utilizing accurate sensor observation leads to
good proposals and highly efficient filters

It is similar to scan-matching on a per-particle
base

The number of necessary particles and
re-sampling steps can seriously be reduced

Improved versions of grid-based FastSLAM can
handle larger environments than naive
implementations in “real time” since they need

one order of magnitude fewer samples
50



More Details on FastSLAM
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