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Particle Filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes

Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter, Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
Computer vision: [Isard and Blake 96, 98]
Dynamic Bayesian Networks: [Kanazawa et al., 95]d
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Algorithm Particle_filter(X,_,, u;, z;):
Xy =X, =)
form =1 toM do
sample z\™ ~ p(x; | ug, 2™
w["'”l = p(z | )™
“t P
-’j‘ft + < {m} ﬂ},T”]>
endfﬂr
form =1 to M do
draw ¢ with probability wf]
10: add :EE'] to X}
11: endfor
12: return X
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1. Line 4 generates a hypothetical state :1:£m1 for time ¢ based on the particle
,nt[f]] and the control u;. The resulting sample is indexed by m, indicat-
ing that it is generated from the m-th particle in X;_,. This step involves
sampling from the state transition distribution p(z; | u;, 2,—1). To imple-
ment this step, one needs to be able to sample from this distribution. The

set of particles obtained after M iterations is the filter’s representation of
E(I})

2. Line 5 calculates for each particle ;trffm] the so-called importance factor, de-

noted w,™. Importance factors are used to incorporate the measurement
2z; into the particle set. The importance, thus, is the probability of the

measurement z; under the particle ™ given by wi™ = p(z | ™). If

we interpret wiml as the weight of a particle, the set of weighted particles

represents (in approximation) the Bayes filter posterior bel(xz:).
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3. The real “trick” of the particle filter algorithm occurs in lines 8 through
11 in Table 4.3. These lines implemented what is known as resampling
or importance sampling. The algorithm draws with replacement M parti-
cles from the temporary set X;. The probability of drawing each particle
is given by its importance weight. Resampling transforms a particle set
of M particles into another particle set of the same size. By incorporat-
ing the importance weights into the resampling process, the distribution
of the particles change: Whereas before the resampling step, they were
distributed according to bel(z;), after the resampling they are distributed
(approximately) according to the posterior bel(z) = n p(z | 2™ Nbel (z).
In fact, the resulting sample set usually possesses many duplicates, since
particles are drawn with replacement. More important are the particles
not contained in A;: Those tend to be the particles with lower importance
weights.



Motion Model Reminder
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Importance Sampling with Resampling:
Landmark Detection Example




Distributions
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Distributions

Wanted: samples distributed according to
p(Xl Zl/ ZZ/ 23)
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This is Easy!

We can draw samples from p(x|z,) by adding
noise to the detection parameters.




Importance Sampling with
Resampling

Weighted samples After resampling



Initial Distribution, sonar
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65
Ultrasound Scans
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Estimated Path




Summary

Particle filters are an implementation of
recursive Bayesian filtering

They represent the posterior by a set of
weighted samples.

In the context of localization, the particles

are propagated according to ‘the motion
model.

They are then weighted according to the
likelihood of the observations.

In a re-sampling step, new particles are
drawn with a probablllty proportional to
the likelihood of the observation.
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