

Probabilistic Robotics Bayes Filter Implementations Particle Filter

ELEC-E8111 Autonomous Mobile Robots Arto Visala 13. 3.2019

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle Filter algorithm 1/3

1:	Algorithm Particle_filter(X_{t-1}, u_t, z_t):
2:	$ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$
3:	for $m = 1$ to M do
4:	sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$
5:	$w_t^{[m]} = p(z_t \mid x_t^{[m]})$
6:	$\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$
7:	endfor
8:	for $m = 1$ to M do
9:	draw i with probability $\propto w_t^{[i]}$
10:	add $x_t^{[i]}$ to \mathcal{X}_t
11:	endfor
12:	return \mathcal{X}_t

Particle Filter algorithm 2/3

- 1. Line 4 generates a hypothetical state $x_t^{[m]}$ for time *t* based on the particle $x_{t-1}^{[m]}$ and the control u_t . The resulting sample is indexed by *m*, indicating that it is generated from the *m*-th particle in \mathcal{X}_{t-1} . This step involves sampling from the state transition distribution $p(x_t \mid u_t, x_{t-1})$. To implement this step, one needs to be able to sample from this distribution. The set of particles obtained after *M* iterations is the filter's representation of $\overline{bel}(x_t)$.
- 2. Line 5 calculates for each particle x_t^[m] the so-called *importance factor*, denoted w_t^[m]. Importance factors are used to incorporate the measurement z_t into the particle set. The importance, thus, is the probability of the measurement z_t under the particle x_t^[m], given by w_t^[m] = p(z_t | x_t^[m]). If we interpret w_t^[m] as the *weight* of a particle, the set of weighted particles represents (in approximation) the Bayes filter posterior bel(x_t).

Particle Filter algorithm 3/3

3. The real "trick" of the particle filter algorithm occurs in lines 8 through 11 in Table 4.3. These lines implemented what is known as *resampling* or *importance sampling*. The algorithm draws with replacement M particles from the temporary set $\bar{\mathcal{X}}_t$. The probability of drawing each particle is given by its importance weight. Resampling transforms a particle set of M particles into another particle set of the same size. By incorporating the importance weights into the resampling process, the distribution of the particles change: Whereas before the resampling step, they were distributed according to $\overline{bel}(x_t)$, after the resampling they are distributed (approximately) according to the posterior $bel(x_t) = \eta \ p(z_t \mid x_t^{[m]}) \overline{bel}(x_t)$. In fact, the resulting sample set usually possesses many duplicates, since particles are drawn with replacement. More important are the particles *not* contained in \mathcal{X}_t : Those tend to be the particles with lower importance weights.

Motion Model Reminder

Proximity Sensor Model Reminder

Importance Sampling with Resampling: Landmark Detection Example

Distributions

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Weighted samples

After resampling

Initial Distribution, sonar

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.