

T-111.4360

Design of WWW Services

Final Phase

Topic

Study Schedule Planner

18 May 2014

Group 10

2 / 34

Table of Contents

1 INTRODUCTION AND DESIGN 4

1.1 INTRODUCTION 4
1.2 USER GROUP ANALYSIS 5
1.3 SCENARIOS 5
1A. LOTTA, 2TH YEAR STUDENT 5
1B. MIKKO, 5TH YEAR CSE STUDENT 5
2. MINNA, CSE STUDENT 6
3. MARIA, CSE STUDENT 6
4. HEIKKI, FORMER CSE STUDENT 6
1.4MAIN FEATURES 6
1.5 SITE STRUCTURE 7
1.6 REFLECTION 8

2 CONTENT 9

2.1 CONTENT PRODUCTION 9
LOGIN / REGISTER / INFO PAGE 9
CALENDAR PLANNER PAGE 9
TERMS OF USE AND PRIVACY POLICY PAGE 10
SETTINGS PAGE 10
2.2 CONTENT UPDATE PROCESS 11
2.3 REFLECTION 11

3 USER INTERFACE AND INTERACTION 12

3.1 INTERACTION 12
3.2 USER INTERFACE 15
SCREENSHOTS OF EACH PAGE 16
3.3 REFLECTION 24

4 ARCHITECTURE AND TECHNOLOGIES 25

4.1 ARCHITECTURE 25
4.2 DATABASE 25
4.3 PERFORMANCE 27
4.4 SECURITY 27
4.5 HTML&CSS 28
4.6 BROWSERDEPENDENCIES 28
4.7 TECHNOLOGIES AND INSTALLATION 28

3 / 34

BACKEND SOFTWARE REQUIREMENTS SUMMARY 28
FRONT-‐END SOFTWARE COMPONENTS SUMMARY 29
RUNNING THEWEB SERVER 30
ACCESSING AN ONLINE VERSION OF THEWEB SERVICE 30
4.8 DYNAMIC FUNCTIONALITY 31
4.9 REFLECTION 31

5 DESIGN OF THE PROJECT 32

5.1WORKBREAKDOWN STRUCTURE 32
5.2 TIME SCHEDULE 32
5.3 USE OF TIME 33
5.4 REFLECTION 33

6 FINAL REFLECTION 34

4 / 34

1 Introduction and Design
1.1 Introduction
Planning of study schedules is a slow multi-step process that requires lots of time and
patience from university students and academic staff. At Aalto University, the students’
typical schedule planning process starts by searching the course information in the
WebOodi and Noppa web services. After finding some suitable courses, the users then
manually add the course information to their personal calendars. If the user notices that
some courses have overlapping or in some other way problematic schedules, they then
delete the overlapping courses from their calendars and go back to WebOodi and
Noppa to check if some other useful courses are available. After finding some suitable
courses, they will then add the new courses to their calendars again and check if the
new courses overlap with some existing ones.

In addition to the previously mentioned user group (students), the teachers may also
need a similar schedule planning features when they want to add their own lecture
dates and times to their calendars.

We want to simplify the previously described process by providing a web service that
allows the users to search course schedule information and view the schedules of all
the selected courses in a calendar view on the same page. The users can easily see if
the course schedules overlap in the calendar view. When the user is satisfied with the
created schedule, he/she can then export the events to his/her personal calendar
(Google Calendar, Apple iCal or some other calendar application that supports the
popular iCalendar file format).

One similar competing study schedule planning service, www.lukkarit.fi, already exists.
The main problem with the existing lukkarit.fi service is that it is a Chrome web browser
plugin, which means that it can be only used with one web browser. This is a major
problem because the Chrome web browser is not installed on the university IT center’s
computers, which means that the students and academic staff cannot use the typical
classroom computers to design their schedules. We want to develop a web service that
works with all the major web browsers (also the ones that can be used with the
university classroom computers).

5 / 34

1.2 User Group Analysis
As the introduction section mentioned, the users of the service are all Aalto university
students and university personnel. Thus two groups have been chosen as the main
groups: students and lecturers.

Student users are concerned about their own courses and want to schedule them with a
minimal overlapping. Typically users from this group own an external personal calendar
application (such as iCal and Google Calendar), which is mainly used for study
planning.

Lecturers are concerned about the courses that they teach and adding the course
events to their personal calendars easily.

1.3 Scenarios
The following diagram shows the most important use case scenarios of the service. The
arrows indicate which user groups are involved in certain scenarios. Detailed usage
scenarios are listed below. The number of each item indicates its priority level.

Figure 1. The main usage scenarios and user groups.

1a. Lotta, 2th Year Student
“I have signed into courses ‘Ohjelmoinnin perusteet Y’ and ‘Business Process Design
and Implementation P’. I want to know the lecture dates and export them into my iCal.”

1b. Mikko, 5th Year CSE student
“I want to plan my next period so that I can work 4 days per week and do the school
stuff (lectures/exercises) within one day. I also want to get my planned exercises groups
and lectures to my Google Calendar”

6 / 34

● Current period is II
● Doesn’t remember which courses have teaching atm
● Wants to select exercises/lectures for specific week day and deadlines

regardless of day
● Has already HOPS with remaining courses

○ “Information retrieval” III
○ “Web services P” I-II
○ “T-106.5600” - II
○ “T-76.5115” - II-IV

2. Minna, CSE Student
“I want to see where (in which lecture room) my today’s lectures are?”

3. Maria, CSE Student
“I created my calendar few days ago. Now I’m going to drop one of my courses. I want
to modify my existing calendar so that I can drop that course and import the new version
to my Google Cal.”

● Courses already selected:
○ Design of WWW Services
○ Web Software Development
○ Information Retrieval
○ User Interface Construction

● Course to drop:
○ Information Retrieval

4. Heikki, Former CSE Student
“I discussed with my colleagues about my former studies. I used this application to plan
my calendars. I’d like to review my old schedules by using this service.”

● Has created calendars for years 2011-2012, one for each period
● Wants to review his previous studies from III/2012

1.4 Main Features
Based on the scenarios, we identified the following main features that must be
implemented to the service.

● Searching courses (students, lecturers)
● Adding courses to user’s own courses (students, lecturers)
● Viewing course schedules in calendar view (students, lectures)
● Viewing a list of old courses (students)
● Exporting events to an external calendar (students, lecturers)

7 / 34

● Checking if course events overlap with other courses (students)

1.5 Site Structure
The site consists of several parts, which are shown in the diagram below. The login /
info page, the terms of service and privacy policy page are publicly available for
everyone and are meant to be used by all the users of the service, whereas the
calendar planning functionality and settings require login.

All the pages have some common parts that are added to the pages dynamically, such
as the navigation bar and the footer. The calendar planner page is the most dynamic
page; almost all the contents are generated dynamically. Likewise, the settings page
needs to check the user account information from the database to know which social
media accounts are connected to the user account and which are not connected. The
login/info page and the legal pages (terms of service and privacy policy) contain mostly
static content.

The login / info page contains allows the user to log in to the service. The page also
contains material about how the service can be used (site tour that showcases the most
important features of the web service). (students, lecturers)

The service contains a page that shows terms of service and privacy policy. This
page is needed because a service that collects information about its users is legally
required to have a privacy policy and a terms of service in Finland. (students, lecturers)

The calendar planner page is implemented as a single page application, in which the
content is refreshed dynamically. The page contains the following functionality:

● Course search, which allows the user the search for courses. (students:
searching for courses, lecturers: searching for courses)

● Course selector, which contains checkboxes for selecting which course events
(exercise groups, lectures) should be shown in the calendar. (students, lecturers)

● Calendar view, which allows the user to view course events (lectures, exercise
sessions, assignment deadlines, midterm exams and final exams) in calendar.
(students, lecturers)

● Calendar exporting feature, which allows the user to export the calendar in
iCalendar format to Google Calendar, Apple iCal or some other similar
application. (students, lecturers)

● It is also possible to view a list of old courses. (students)

8 / 34

Settings page contains settings for choosing which social media accounts the user
wants to use to login to the service.

Figure 2. Site structure.

URLs for each page:
Login/info /
Calendar planner app/
Settings settings/
Privacy policy legal/privacy-policy/
Terms of service legal/terms-of-service

1.6 Reflection
The implemented application follows the design plan quite well. Some features were
dropped due to lack of time: information about deadlines, study modules and course
material (lecture slides etc.) were not developed.

9 / 34

2 Content
2.1 Content Production
Login / Register / Info page
An introductory page showcasing functionality offered by the application. This consists
of images that tell about the web service.

User groups: students, lecturers.
Reference material: we will use the calendar planner page as reference material when
creating the site tour and help content.
Producer of the material: we. In a real web service, we would also use the help of a
usability expert, a graphic designer and an art director.
Copyrights: we.
Modification: we. In a real web service, we would also use the help of a usability expert,
a graphic designer and an art director.
Time dimension and dynamics: The help content etc. must be checked if any changes
are made to the calendar planning functionality.
Languages: The page was only implemented in English due to lack of time. If we
happened to have more time, we would have translated the web app to Finnish and
Swedish.

Calendar Planner Page
Help tooltips will aid the user depending on what functionality the user is using. The
tooltips appear when the user places the mouse over an item that may need some
clarification; for example, when the user places the mouse over the name of the
calendar application that they want to use for opening the exported calendar, a help
tooltip is shown for describing how the user can add the calendar feed to Google
Calendar or Apple iCal.

The course information is retrieved from Noppa API.

User groups: students, lecturers. More detailed information about how each user group
uses the calendar planner is given in section 1.5.
Reference material: Noppa API for the course information, Aalto study guides for the
study modules.
Producer of the material: course information is produced by Aalto University employees.
We create the help content.

10 / 34

Copyrights: Aalto University owns the rights to the course information (the content is
licenced with the Noppa API’s open data license). We reserve rights to the user history
content and help content.
Modification: Aalto University employees modify the content that is provided via the
Noppa API. We have to input the information about the study modules because the
Noppa API does not provide that information.
Time dimension and dynamics: the content is mostly useful when the courses are
arranged and before the courses are arranged, but some users may also want to view a
history of their previously taken courses.
Languages: The page was only implemented in English due to lack of time. If we
happened to have more time, we would have translated the web app to Finnish and
Swedish.

Terms of Use and Privacy Policy Page
The terms of use and privacy policy statements. When creating this page, we used the
Finnish legislation as the main reference.

User groups: students, lecturers.
Reference material: Finnish legislation. (www.finlex.fi)
Producer of the material: we; in a real service it would be a lawyer.
Copyrights: we.
Modification: we, in a real service the content would be modified by a lawyer.
Time dimension and dynamics: The content may need to be modified if some changes
are made to the calendar planning functionality or to the Noppa API open data license.
Changes to the Finnish legislation may also affect the validity of the privacy policy and
the terms of service.
Languages: The page was only implemented in English due to lack of time. If we
happened to have more time, we would have translated the web app to Finnish and
Swedish.

Settings Page
User groups: students, lecturers.
Reference material: Python Social Auth documentation.
Producer of the material: we.
Copyrights: we.
Modification: we.
Time dimension and dynamics: The content may need to be modified if Facebook,
Twitter or Google change their social login features.

11 / 34

Languages: The page was only implemented in English due to lack of time. If we
happened to have more time, we would have translated the web app to Finnish and
Swedish.

2.2 Content Update Process
We will create the help content ourselves. The help content and tutorials may need to
be updated after some parts of the calendar planner single-page application are
modified. If the service happened to be a real commercial service, the help content
would be written by a usability specialist and the tutorials would be designed by a
usability specialist, a graphic designer and an art director. The required tools for the
content updates include image and video editing programs and programming tools that
support the Django templating language.

The terms of service and the privacy policy may need to be updated if the Finnish
legislation changes. In this demo application, we would just update all the legal content
ourselves, but if this happened to be a real web service, we should probably ask a
lawyer to review all the legal content before it is published. The required tools for the
content updates include programming tools that support the Django templating
language. If the content happened to be written by a lawyer, he/she would most likely
write the updated legal content with a word processor and the web site maintainers
would convert the content to Django templates.

The course information comes from the Noppa API and that content is updated by
people who maintain the Noppa API. To enable the users to search courses based on in
which study module they belong, we will need to input the information about study
modules to the database because the Noppa API does not provide information about
study modules. The information about study modules should be updated annually after
the new study guides are published on the university website. The required tools for
updating the study module information include tools that support adding data to the
database. To get the latest information from the Noppa API, we just need to make
normal HTTP GET requests to retrieve the latest information from the API.

We will update the settings page ourselves. The page may need to be updated if
Facebook, Twitter or Google change their social login features.

2.3 Reflection
The login/info page showcases the functionality of the application in the form of text and
screenshots. We did not have enough time to complete short videos but the text and the
screenshots wound up being informative enough.

12 / 34

The terms of service and privacy policy documents were somewhat easy to create as
intended in the design phase, as there were drafts to be found for such purposes.
Further development would need to be done with a lawyer. The documents are
reasonably small and divided into subtopics so that reading the documents is possible
for the target users. Overall we think that the content satisfies our initial plans well.

3 User Interface and Interaction
3.1 Interaction
When new user enters the service, he/she must use a social media account to login.
Because the majority of the users are students, it is highly probable that the user has a
social media account, thus the SSO speeds up the registration process. If this web app
was an official Aalto University web service, we would use the Aalto Shibboleth login
instead of social media login functionality.

In an earlier version of the service we forced the user to create a new user account with
traditional username/password authentication. However, we realized that it was a bad
idea because it was required that the user would memorize a username/password
combination. A typical user of this web service uses the service only five times during
per year (once before each teaching period), which means that many users will forget
their usernames and passwords because they use the service so rarely. Some users
might also use weak and easy-to-guess password, which would weaken the security of
the service. Therefore, we decided that it is best to allow the users to use their existing
social media accounts or Aalto accounts, which they use more often.

13 / 34

Figure 3. The top of the login/info page contains buttons for signing in with social media
accounts and information about why the traditional study schedule planning process is
difficult and complicated.

Figure 4. The bottom of the info/login page contains help content in an image carousel,
which explains how the users can user use the service to plan their studies.

14 / 34

When the user has logged in, the scheduling view is displayed. In our opinion, service is
ill-designed if it requires multiple pages for the calendar planning process. Thus, the
scheduler is a single-page app that contains all necessary components for study
planning:

1. User searches the course he/she wants to add to his/her calendar
2. User selects which exercises/lectures he/she wants to take from courses

(calendar is updated in real time when selections are being made)
3. User exports/syncs the calendar into his/her personal calendar application

Because the calendar is updated immediately after course selections, the same view
can be used for both teachers and students.

Figure 4. Calendar planner (single-page application).

There might also be cases when the users want to view their history (old courses). This
can be done by clicking the “My Old courses” button, which opens the dialog listing all
old courses for the user.

15 / 34

Figure 5. A list of old courses is displayed as an overlay on top of the calendar planner.
The user can use the Move to calendar button to move old courses back to the calendar
and the Remove course button to delete the course from his/her courses forever.

3.2 User Interface
We used Twitter Bootstrap (http://getbootstrap.com) for our visual style and graphical
elements. We also created some own custom CSS rules with the LESS stylesheet
language for those parts of the user interface when the Bootstrap user interface controls
did not suit our needs. Twitter Bootstrap is a modern and widely used front-end
framework with good support. Because the service is targeted at a wide range of
university students and teachers who most likely have varying tastes for the visual style
of web services, we used a neutral and simple visual style for the service (mostly white
and black with some accent colors, e.g. blue, red and green). We used mostly sans-
serif fonts (Raleway, Helvetica, Arial etc.), which are easy to read on computer displays.
If this web service happened to be an official university-sponsored study schedule
planning service, we should follow the university’s visual style guidelines.

The calendar element is in a centric part in our user interface so (regardless of the user
group) it must be extremely easy-to-use and similar to the known implementations (such
as Google Calendar / iCal). Thus, we used FullCalendar
(http://arshaw.com/fullcalendar).

16 / 34

Because the students and lecturers usually use desktop or laptop computers to design
their schedules, we did not use responsive design for the calendar planning page.
Implementing the calendar view for mobile devices’ small screens would have been
challenging. However, we used mobile-friendly responsive design for every other part of
the web service (login/info page, settings and legal content); some users may visit the
web service with their mobile device if they see an advertisement of the service
somewhere at the university campus or hear about it from their friends.

Screenshots of Each Page

Figure 6. Login/info page in Mozilla Firefox on Linux.

17 / 34

Figure 7. Login/info page on iPhone (iOS 7).

18 / 34

Figure 8. Calendar planning page in Google Chrome (OS X Mavericks).

19 / 34

Figure 9. Calendar planning page on iPhone (iOS 7).

20 / 34

Figure 10. Calendar planning page on iPad (iOS 7).

21 / 34

Figure 11. Old courses view in Firefox (OS X Mavericks).

Figure 12. Old courses view in Firefox (Linux).

22 / 34

Figure 13. Privacy policy page in Firefox (Linux).

Figure 13. Privacy policy page on iPhone (iOS 7).

23 / 34

Figure 14. Settings page in Google Chrome (OS X Mavericks).

Figure 15. Settings page on iPhone (iOS 7).

24 / 34

3.3 Reflection
The login/info page looks different from the original design because we decided to
remove the new user account creation (with username and password authentication)
feature. The final design is better because it is simpler than the original design. In the
mockups, we planned to have some video tutorials on the login/info page but we did not
have time to create videos. However, we believe that the screenshots that we used on
the login/info page explain how to use the service very well. It should be noted, too, that
the calendar planning single-page application is not overly complex to use and therefore
it is not necessary to create a huge amount of help content.

The initial plan for the calendar planning page contained information about course
material (lecture slides etc.), study modules and deadlines. We did not have enough
time to implement those features. Otherwise, the calendar planning page is very similar
when compared with the early mockups.

The old courses view look exactly the same in the final version as in the early mockups.

The final version of the legal content pages (privacy policy and terms of service) looks
very similar to the early drafts of those pages.

The final version of the settings page looks completely different from earlier versions
because we decided to remove the basic username/password authentication.
Therefore, the settings page does not contain an option for changing the password. We
believe that the final design is better because it is much simpler from end user’s point of
view.

We think that the final version of the web service works well for both main user groups.
It can be challenging to design a user interface that suits well for two user groups (e.g.
Noppa has different user interface for students and lecturers), but we succeeded quite
well in designing a user interface that can be used by two user groups.

25 / 34

4 Architecture and Technologies
4.1 Architecture
Our service is a standard HTML5 application that can be run with all modern web
browsers with JavaScript enabled (Chrome, Firefox, IE 9+). We are using “thin server,
thick client” design pattern. This means that our backend is just a data storage with
lightweight JSON REST API and the actual logic is done with JavaScript in the client.
Backend contains also integration to Noppa API and Google calendar. The back end
uses Model-View-Template design pattern, which is very similar to the popular Model-
View-Controller design pattern (essentially, Django’s views correspond to the controllers
in traditional MVC and Django’s templates correspond to the views in traditional MVC).

The following figure displays the high-level architecture of our service:

Figure 16. High-level view of the web application architecture.

We use Django for our backend. For database engine, we are using PostgreSQL for
user account data storing and MongoDB for calendar data storing.

4.2 Database
For database engine, we are using PostgreSQL for user account data storing and
MongoDB for calendar data storing. The reason for choosing two databases is that

26 / 34

Django authentication support PostgreSQL natively. However, the course data is much
easier and efficient to store as a mongo record.

The following diagram demonstrates the database structure of our application. The
PostgreSQL tables are simplified (for our use case only) because they are generated
automatically by Python Social Auth library.

In general, each user has one “subscription” record in the Mongo database. This
subscription can contain many courses (either marked as “old” or “new”) and these
courses can contain several activities (lectures, exercises…). Each activity can contain
from 0 to n events (with start/end times and optional location). When user requests
events or courses, they are fetched from this record. Because we use Mongo’s
aggregation framework for the whole operation, it is very fast.

27 / 34

4.3 Performance
We do not believe that the service will face any difficult performance issues because the
user base is relatively small (only the Aalto University students and faculty) and the
responsibilities of the backend are small. Some usage spikes may occur at the near
beginning of each teaching period when many users are planning their schedules. The
operations in the client does not contain much calculation so tablets and even mobile
phones can handle the service.

Our target was the client load-time under 1 sec (+ network latency) which was
successfully achieved. We didn’t do any automated performance tests but browser
debugging tools show that the backend operations took normally under 200ms to
process. Good performance comes mainly from MongoDB native aggregation
framework usage: almost all data processing is done inside the database engine and
results are only converted to the JSON in the application server.

Because we are using the Heroku’s free node as our “production” server, its
performance is poor compared to our development environments. Heroku also puts the
free nodes to hibernate after certain period of inactivity: when requesting the service
first time, it might take up to 5 minutes for the service to start. However, this could be
fixed easily by buying the proper backend nodes.

Our main concern is the availability of the Noppa API, because as active users of the
Noppa web service we know that it often has maintenance breaks that often cause
some downtime and other problems. The Google calendar integration is done by using
generated iCal feeds which are polled by Google, so the downtime in Google services
doesn’t affect the usage of our service.

4.4 Security
We try to mitigate the threat of security risks by building the service from widely used
and well tested open source components, such as the Django framework and the
Apache web server. If this web service was developed as a commercial project or as an
official university study schedule planning tool, the connection should use SSL
encryption but it’s not possible in the scope of this course.

Our data model ensures that there is no sensitive information about users - we don’t
store any password but use OAuth and OpenID instead: currently supported providers
are Facebook, Google and Twitter. If this application came to the real use, we’d also
integrate Shibboleth for Aalto University students.

28 / 34

4.5 HTML & CSS
The HTML of the website follows the guidelines of HTML5 standard. There are few
errors coming from <form> tags because validators can’t detect the JavaScript usage
and custom functionality we built for form inputs. There are also some errors generated
by FullCalendar plugin. Most of the HTML is generated dynamically based on user data.

Because we are using Twitter Bootstrap as our style base, the CSS is not valid: the
Bootstrap itself contains several hundreds of errors1. However, we’ve tried to keep our
own CSS as clean as possible. We use LESS stylesheet language which only compiles
to CSS if the stylesheet`s syntax is correct.

4.6 Browser Dependencies
We are not using any browser dependent parts in our service. All front-end code is plain
vanilla JavaScript, CSS and HTML. JavaScript must be turned on in order to use the
service (all modern browsers support JavaScript by default nowadays).

The login/info page, the settings page, the privacy policy page and the terms of service
page are optimized for mobile devices. However, the user experience of the calendar
page is not very good on mobile devices due to high amount of information combined
with small device’s screen.

4.7 Technologies and Installation
Backend Software Requirements Summary

Table 1. Backend software requirements.

Name Version Usage Usefulness

Python 2.7.5 Backend language Pretty good for quick software
development

Django 1.6.x Web framework A little bit heavyweight for
simple REST API, could be
replaced with e.g. Flask

icalendar 3.6.2 iCal feed export Very useful for iCal feed
generation, saved many
hours of work

1 https://github.com/twbs/bootstrap/issues/6398

29 / 34

Python social
auth

0.1.23 OAuth and OpenID
provider integration

Very useful and easy to use.
Also secure compared to own
implementations.

MongoDB 2.4.8 Course data
storage

Easy-to-use and high
performance. Can be used for
enterprise applications too.

SQLite 3.x.x Development user
data

Very useful for development

PostgreSQL 9.x.x Production user
data

Not very useful: hard to install
and administrate. Could be
replaced with MySQL. We
chose this database because
Heroku provides free hosting
for PostgreSQL and Django
ORM supports it well.

Some libraries that are mentioned in table 1 depend on other pieces of software. All the
dependencies are listed in the requirements.txt file. All the application dependencies
can be downloaded with pip (https://pypi.python.org/pypi/pip) by using the project
requirements.txt file:
$ pip install -r requirements.txt

Databases must be installed by using OS dependent installation tools (Linux: apt-get,
OSX: homebrew or macports, Windows: installers from websites).

Front-End Software Components Summary

Table 2. Front-end software requirements.

Name Version Usage Usefulness

jQuery 1.10.2 DOM manipulation Mandatory

Lodash 2.5.1 Utilities, and
collection
manipulation

Not mandatory but very
useful and provides nice
functional programming
interface. Could be replaced
with underscore

require.js 2.1.11 Dependency
management

Not mandatory but helped a
lot to maintain the codebase

30 / 34

and to split features into
smaller modules

FullCalendar 1.6 Calendar rendering Very useful and easy-to-use.
Saved many hours

moment.js 2.x.x Datetime handling Very useful

Twitter
Boostrap

3.x.x Base styles Not mandatory but very
useful. Provides a wide set of
UI components and nice
markup.

Handlebars 1.3 Template
management

Not used at all, could be
useful for bigger projects but
not in this one

LESS 1.5.0 Style sheet
generation

Modern CSS, this should be
used for every project. Could
be replaced with SASS

All frontend components can be found from project sources under static/vendor
folder.

Running the Web Server
After installing all the required code libraries, frameworks and database, you can run the
web server on your computer by running the following commands in Terminal:

Create the SQL database

$ python manage.py syncdb

Start MongoDB

$ mongod

Run the application

$ python manage.py runserver

To open the web application, navigate to http://127.0.0.1:8000 with a web browser.

Accessing an Online Version of the Web Service
You can access an online version of the web service at http://design-of-www-s-group-
10.herokuapp.com/.

31 / 34

4.8 Dynamic Functionality
The most important “dynamic functionality” in our service is the user’s calendar view,
which is be unique for all users, according to the selections the user makes. The
following sequence explains the user actions and results when creating unique
calendar.

1. User signs in to the service first time. In this time, there is no previous content for
the user in our database so the calendar remains empty. The first time usage is
identified and tutorial is displayed to the user.

2. User starts to search courses. This triggers an JSONP call to Noppa API with the
typed keywords. Noppa API returns courses matching the keyword, the user
interface displays the matches to that user can select the wanted course by
clicking it with mouse.

3. When user clicks the course, it will be added to “user’s courses” list. Technically
this means that the client tells backend that user has selected a course. Backend
saves this information and fetches the course data from Noppa API. The client
then asks the content from backend. The fetched course data is rendered in the
calendar view by using JavaScript

4. When user closes the browser, the course data still remains in our server so that
when the user signs in next time, his/her data can be restored from our backend
and the calendar view can be displayed based on the previous selections.

Each course data is stored per user and only when user has requested the course.

4.9 Reflection
We are very satisfied to the results. Everything went as planned and there were no
drawbacks in the implementation phase. We used git as our version control: all features
were developed in separate branches and merged to the master via pull requests. This
ensured that the codebase remained clean and coherent.

The only thing we would done different would be using only single database engine.
Because there was so little time for this project, we had to make compromises in order
to get all things done - resulting the usage of two database engines.

32 / 34

5 Design of the Project
5.1 Work Breakdown Structure
The WBS of our service contains three main task: implementation, documentation and
misc. The major workload comes from the implementation task which is divided into
smaller subtasks. Each subtask is an independent feature. There is dependencies
between subtasks but they are not shown in this graph. The dependencies are
displayed in time schedule where those tasks are put into the timeline (dependencies
first).

Documentation task contains the time for course documentation writing and preparation.
Misc contains sub-tasks that are neither implementation nor documentation but that
must be done before the course is done.

We didn’t want to assign specific tasks to specific team members. However, we have
given areas of responsibilities: = backend, = frontend, = documentation.
This doesn’t mean that everyone takes only tasks for his responsibility area but just
ensures that the things get done before the deadline.

5.2 Time Schedule
The following diagram displays the planned time schedule. The tasks are named
identically with our WBS chart.

33 / 34

Figure 6. Gantt chart.

5.3 Use of Time
We used Google spreadsheet for our time logging. The hours spent were the following:

Table 1. Time consumption in hours.

 115
 126
 118

It was possible to produce the planned features and documentation in a timely manner.
However, because multiple persons were usually involved to same tasks, we didn’t
record the time per task per person. The overall spent times per tasks can be found
from the updated WBS chart.

5.4 Reflection
The work breakdown structure was good in retrospect, the tasks were atomic enough so
that dividing them didn’t bring extra challenges. The time schedule did lag behind a bit
during the late development but not much.

34 / 34

6 Final Reflection
In our opinion, the design process went smoothly and we are happy with the end
results. We believe that it was good that our early drafts of the web service were already
very well planned and therefore the implementation was quite straightforward. Some
initially planned features had to be dropped due to lack of time during the
implementation phase.

We think there could be a real userbase for this service and currently our
implementation can satisfy their needs. The only thing we would do differently in the
implementation phase would be to to use a single database engine as discussed in
section 4.9.

What makes us most proud is the simplicity and elegance in the user interface. We
spent a lot of time planning the user experience and the simple workflow. We believe
that the user interface is so simple that most users can use it without any guidance
(although we created some help content to make it clear how the web service can be
used and why the service is useful for the user groups.

We did not have significant project management issues as Github was a good platform
for development. Our development process required that all new features had to be
merged to the master branch by using pull requests. This ensured that the code was
always reviewed by at least one person, thus making the codebase coherent and clean.

The most important thing that we learned during the course was to understand the role
of different user groups and how to design user interfaces that work well for multiple
user groups. We also gained some experience in documenting the planning process of
a user interface from early mock ups and user stories to a finalized user interface.

