
Things never to do,
That you might
have to do
14.3.2019
Santeri Paavolainen

Why concurrency?

- Locally: performance
- Distributed systems (including microservice architectures)

are by definition concurrent systems
- Independent and autonomous randomly failing machines

communicating over asynchronous and lossy networks
- Completely sequenced systems can work efficiently

- Very limited situations, not often found in real life
- Still does not solve redundancy

- Redundant systems (>1 node) always need some distributed
coordination

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

3

A B

ABCDEF

XYZZYFO

OB

GHIJKLM

2
1

3
4

XYZZYFO GHIJKLM

General problem on
any asynchronous
sequence of
operations that rely
on earlier steps

e.g. locking,
mutexes,
sequencing, …

What are these?

- Standard concepts used for concurrency control
- Prevent concurrent access (mutual exclusion)
- Coordinate operations (barriers)
- Restrict resource usage (semaphores) or access type (rw locks)
- Atomic operations (compare-and-swap)

- Very important concepts!!!
- Critical in creating truly concurrent systems

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

6

Why should not be used?

- Concurrent programming is devilishly difficult
- Lot of design in many systems, languages and programming

frameworks has gone into hiding concurrency
- “Looks mostly sequential” plus exceptions for corner cases: most

databases (SQL and NoSQL alike)
- Parallel single-threaded applications with sequential interfaces:

Erlang, AKKA, all “event loop” frameworks
- Idempotent or functional interfaces: anything with retries (queues,

WfS, Hadoop)
- Avoid explicit concurrency management if possible!

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

7

Ways to avoid explicit concurrency
control
- Idempotent or functional interfaces

- Doing the same operation twice has no effect
- Keep track of progress (database?), return result of first operation
- Just re-do but ensure always same result (like image thumbnails): functional e.g. same input =

same output
- Make it someone else’s problem

- Although you’ll have to deal with corner cases anyway
- Usually simpler, though – db rollback? à 503 Service Temporarily Unavailable or 500 Internal Server Error and

hope upstream retries
- Use languages and frameworks that simplifies things

- Erlang, AKKA, Elm, …: Explicit message-passing across actors, no shared state
- JavaScript: Everything is asynchronous and callback-based (promises etc.)

- Brings its own problems
- Single sequencer aka leader (but now have leader selection problem…)
- Write excessively and clean up later

- Unique filenames in S3, FCFS for DB update, later GC unused files

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

8

However …

- For some problems there may not be a good ready-to-go
solution

- Performance impact
- Unacceptable complexity

- NEVER EVER ACROSS MICROSERVICES!
- Keep any explicit concurrency control inside your service’s

boundary!
- (Of course there are corner cases … there always are)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

9

Service A

Service B

lock item_id=123
decrease quantity
assign customer,

…)

Service A

FE

Service B

Redis

purchase
item_id=123
quantity=10

customer_id=991

Calculator

lock
item_id=123
for=0x54345

update
for=0x54345

locked?

NO YES
(maybe)

If you really insist
- Use some distributed system to start with

- Memcache, Redis, etcd, ZooKeeper (esp. Curator)
- Understand network partitioning behavior! (CAP again)

- Atomic operations
- Increment (increment and return value)
- Compare-and-swap (CAS), e.g. read old value, CAS, if fails, retry

- CAS basis for
- Leader election: Try to become leader, fails if someone already is
- Lock: CAS 0 à 1, if fail, wait and retry

- Always consider what happens if “client” dies
- TTL, lock refreshing, check before commit, … (corner cases)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

11

Still

- Try to avoid
- Try to rewrite the problem so won’t have to do

- Or use less error-prone primitives (even DB update and transaction
abort are useful)

- Example: Users uploading files to S3, thumbnail workflow
- Thumbnail: user-id / filename_resolution à multiple writes?
- Thumbnail: hash(filename)_resolution à same content?
- Thumbnail: monotonic sequence (atomic incr) à contention
- Thumbnail: random string (locally) à no conflict

- With sufficiently large string and good source of randomness unlikely conflict

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

12

Too much time on
something you
should not be
doing…

