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Previously …

- Discussed service discovery
- How to “plumb” the pipes between services
- Injection, host-based discovery, directory services

- Discovery is just one aspect of 
service configuration

- E.g. not only about plumbing
- Settings, secrets, …

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

2

Service 
Configuration

Service 
Discovery



Techniques pretty similar to discovery

- Static configuration
- System deployment
- Service start
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Techniques pretty similar to discovery

- Static configuration
- System deployment
- Service start

- Dynamic configuration
- Integrated into service
- Sidecar managed
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Some new considerations

- Configuration delivery and bootstrapping
- Somewhat sidestepped this on discovery …

- Secrets
- Shared secrets (HMACs, JWT tokens, …)
- Access keys (external services)

- (For IaaS internal access, should use service or instance roles instead)

- Private keys (TLS server, TLS client authentication)
- How to handle these?
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Bootstrapping problem
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Bootstrapping

- Instances e.g. virtual machines
- Built into machine image (AMI etc.) – very static and cumbersome 

to change!
- ”User script” – inject configuration as a runnable script defined 

when instance requested (but use cloud-init, see next page)
- Almost all machine images have user script support by default

- Containers
- Build into container image (a bit easier than full machine image)
- Via environment or configuration script via volume mount
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Instance configuration

- Simple bottom line answer: 
just use cloud-init

- Installed in Ubuntu images on 
AWS, Azure, GCE, …

- Support in many other tools 
(Terraform etc.)

- Helps avoid many common 
mistakes

- Build from there

# -*- yaml -*-
package_update: true
package_upgrade: true
packages:

- nfs-common
- docker.io

swap:
filename: /swap.img
size: "auto"
maxsize: 5373952000

write_files: 
- encoding: b64 

content: CiMgVGhpcyBma... 
owner: root:root
path: /etc/sysconfig/selinux
permissions: '0644'

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

8



Level 2 bootstrapping

- Bootstrapping can be 
iterative

- First level hardcoded
curl 
http://config.local/config.sh

- config.local different host on 
different environments

- Evaluate second level loader
- … which does something else

- Very much like cloud-init

- Common sources of 2nd

level bootstrap
- S3 bucket
- Separate configuration host or 

service
- Often with host-based 

discovery for the 2nd level 
location
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Best practice?

- Nothing that applies to all cases …
- Instances: Use of cloud-init recommended

- Custom machine image (AMI) a good idea if lots of commonality 
between instances – still don’t put specific configuration in there, 
parameterize!

- Containers: Environment
- Works best if number of configuration items low
- If complex configuration, sidecar pattern preferable
- Bootstrap sidecar config via environment
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Dynamic configuration

- Facebook and Google extreme examples
- Feature flags dynamically enable/disable functionality

if (feature_x_enabled) { … } else { … }

- Feature flags are dynamically configurable (via some directory)
- Multivariate flags: on/off based on complex criteria

- Potentially change large portions of service functionality 
without code changes or redeployment

- We’ll come back to “dark launches” later on deployments
- (Not without its own problems)
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Secrets and sensitive information

- What are ”secrets”?
- Cloud infrastructure and 3rd party service access keys
- Keys used for HMAC and encryption (signed session token)
- Passphrases for asymmetric cryptography private keys (e.g. TLS)

- For any other kind of keystore (Java, Bitcoin, …)

- On-disk encryption keys
- “Secrets” are runtime information

- Should never go into actual service code or configuration
- Injected only when service started, or pulled in as needed
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Secret management approaches
- Simplest: inject at instantiation

- E.g. have separate deployment repository (limited access?)
- Secrets injected as user script, environment, etc.
- Problems: user script, env etc. visibility and accessibility (by others)

- Inject via orchestration
- Kubernetes secrets

- Separate service
- AWS KMS (Key Management System), Azure Key Vault, Google KMS

- Extreme end is hardware-based systems (PKCS#11)
- Key material never leaves hardware enclosure
- Limited for signatures, encryption and decryption
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Typical KMS usage
1. Create managed key à key identifier
2. Encrypt secret data using key

- The actual key does not leave KMS!
- E.g. “encrypt ‘supasekrit’ with key id 1234’ à ‘7ab76dfe67af77’”

3. Put encrypted secret into configuration (plus key id)
- via environment, user script,  directory service etc.

4. Decrypt secret using key
- E.g. “decrypt ‘7ab76dfe67af77’ with key id 1234 à ‘supasekrit’”
- KMS checks whether requestor has permissions to use the key

- Details vary … (f. ex. direct integration to other cloud services)
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Access keys (within IaaS)

- Cloud provider APIs accept access keys (id + secret)
- AWS_ACCESS_KEY_ID=… AWS_SECRET_ACCESS_KEY=… aws ec2 run-

instances …
- Possible to pass these via previously mentioned configuration methods

- Not recommended to pass access keys directly
- Use instance (or container) roles instead

- Create a role that has required rights
- Assign the role to runtime resource
- Resource can now use APIs as the role!
- (ok actually not that simple, see documentation)
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Summary

- Service configuration ⊇ service discovery
- Share many of the tools (etcd, zookeeper, consul, …)

- Methods vary from static injection to dynamic configuration
- Applicability depends on requirements and constraints

- Management of sensitive information (“secrets”)
- Operational security aspects
- Separation of secrets from code, also KMS tools
- Local cloud provider’s access keys
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