
Service
Configuration
14.3.2019
Santeri Paavolainen

Previously …

- Discussed service discovery
- How to “plumb” the pipes between services
- Injection, host-based discovery, directory services

- Discovery is just one aspect of
service configuration

- E.g. not only about plumbing
- Settings, secrets, …

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

2

Service
Configuration

Service
Discovery

Techniques pretty similar to discovery

- Static configuration
- System deployment
- Service start

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

3

System
Configuration

“Engine”

Component
Configuration

Component

Component

Service

Techniques pretty similar to discovery

- Static configuration
- System deployment
- Service start

- Dynamic configuration
- Integrated into service
- Sidecar managed

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

4

Configuration Service

Configuration

Client

0a. initial configuration
0b. register 2. update

Configuration
Sidecar

0a. initial configuration
0b. register

2. update

3. update state

Client

Config

3. update
config

4. restart

5. use
updated
config

Some new considerations

- Configuration delivery and bootstrapping
- Somewhat sidestepped this on discovery …

- Secrets
- Shared secrets (HMACs, JWT tokens, …)
- Access keys (external services)

- (For IaaS internal access, should use service or instance roles instead)

- Private keys (TLS server, TLS client authentication)
- How to handle these?

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

5

Bootstrapping problem

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

6

Configuration Service

Configuration

Client

0a. initial configuration
0b. register 2. update

Configuration
Sidecar

0a. initial configuration
0b. register

2. update

3. update state

Client

Config

3. update
config

4. restart

5. use
updated
config

How the node
knows where to
fetch
configuration
from?

Bootstrapping

- Instances e.g. virtual machines
- Built into machine image (AMI etc.) – very static and cumbersome

to change!
- ”User script” – inject configuration as a runnable script defined

when instance requested (but use cloud-init, see next page)
- Almost all machine images have user script support by default

- Containers
- Build into container image (a bit easier than full machine image)
- Via environment or configuration script via volume mount

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

7

Instance configuration

- Simple bottom line answer:
just use cloud-init

- Installed in Ubuntu images on
AWS, Azure, GCE, …

- Support in many other tools
(Terraform etc.)

- Helps avoid many common
mistakes

- Build from there

-*- yaml -*-
package_update: true
package_upgrade: true
packages:

- nfs-common
- docker.io

swap:
filename: /swap.img
size: "auto"
maxsize: 5373952000

write_files:
- encoding: b64

content: CiMgVGhpcyBma...
owner: root:root
path: /etc/sysconfig/selinux
permissions: '0644'

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

8

Level 2 bootstrapping

- Bootstrapping can be
iterative

- First level hardcoded
curl
http://config.local/config.sh

- config.local different host on
different environments

- Evaluate second level loader
- … which does something else

- Very much like cloud-init

- Common sources of 2nd

level bootstrap
- S3 bucket
- Separate configuration host or

service
- Often with host-based

discovery for the 2nd level
location

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

9

cloud-
init file

instance
(cloud-init
installed)

per-
instance
user data

user-data
script

instance
(generic)

per-
instance

script

machine
image

build script

machine
image

instance
(custom)

Level 1

image with
cloud-init

S3
bucket

fetch config
(maybe poll)

config
service

instance fetch &
keep up-to-date

Level 2

env vars

container
(custom)

container
(generic)

S3
bucket

config
service

config
sidecar

volume

Best practice?

- Nothing that applies to all cases …
- Instances: Use of cloud-init recommended

- Custom machine image (AMI) a good idea if lots of commonality
between instances – still don’t put specific configuration in there,
parameterize!

- Containers: Environment
- Works best if number of configuration items low
- If complex configuration, sidecar pattern preferable
- Bootstrap sidecar config via environment

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

12

Dynamic configuration

- Facebook and Google extreme examples
- Feature flags dynamically enable/disable functionality

if (feature_x_enabled) { … } else { … }

- Feature flags are dynamically configurable (via some directory)
- Multivariate flags: on/off based on complex criteria

- Potentially change large portions of service functionality
without code changes or redeployment

- We’ll come back to “dark launches” later on deployments
- (Not without its own problems)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

13

Secrets and sensitive information

- What are ”secrets”?
- Cloud infrastructure and 3rd party service access keys
- Keys used for HMAC and encryption (signed session token)
- Passphrases for asymmetric cryptography private keys (e.g. TLS)

- For any other kind of keystore (Java, Bitcoin, …)

- On-disk encryption keys
- “Secrets” are runtime information

- Should never go into actual service code or configuration
- Injected only when service started, or pulled in as needed

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

14

Secret management approaches
- Simplest: inject at instantiation

- E.g. have separate deployment repository (limited access?)
- Secrets injected as user script, environment, etc.
- Problems: user script, env etc. visibility and accessibility (by others)

- Inject via orchestration
- Kubernetes secrets

- Separate service
- AWS KMS (Key Management System), Azure Key Vault, Google KMS

- Extreme end is hardware-based systems (PKCS#11)
- Key material never leaves hardware enclosure
- Limited for signatures, encryption and decryption

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

15

Typical KMS usage
1. Create managed key à key identifier
2. Encrypt secret data using key

- The actual key does not leave KMS!
- E.g. “encrypt ‘supasekrit’ with key id 1234’ à ‘7ab76dfe67af77’”

3. Put encrypted secret into configuration (plus key id)
- via environment, user script, directory service etc.

4. Decrypt secret using key
- E.g. “decrypt ‘7ab76dfe67af77’ with key id 1234 à ‘supasekrit’”
- KMS checks whether requestor has permissions to use the key

- Details vary … (f. ex. direct integration to other cloud services)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

16

Access keys (within IaaS)

- Cloud provider APIs accept access keys (id + secret)
- AWS_ACCESS_KEY_ID=… AWS_SECRET_ACCESS_KEY=… aws ec2 run-

instances …
- Possible to pass these via previously mentioned configuration methods

- Not recommended to pass access keys directly
- Use instance (or container) roles instead

- Create a role that has required rights
- Assign the role to runtime resource
- Resource can now use APIs as the role!
- (ok actually not that simple, see documentation)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

17

Summary

- Service configuration ⊇ service discovery
- Share many of the tools (etcd, zookeeper, consul, …)

- Methods vary from static injection to dynamic configuration
- Applicability depends on requirements and constraints

- Management of sensitive information (“secrets”)
- Operational security aspects
- Separation of secrets from code, also KMS tools
- Local cloud provider’s access keys

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

18

