A?

Aalto University
School of Electrical
Engineering

Service
Configuration

14.3.2019
Santeri Paavolainen

Previously ...

- Discussed service discovery
- How to “plumb” the pipes between services
- Injection, host-based discovery, directory services

- Discovery is just one aspect of
service configuration

- E.g. not only about plumbing

- Settings, secrets, ... Service Service
Configuration'. Discovery

9 Aalto University - y erverless computing 2019
School of Electrical 14.3.2019
|

Engineering 5

Techniques pretty similar to discovery

- Static configuration oystem
_ System deployment Configuration

- Service start

\ 4

“Engine”
Service

|]

]]

|

. | Component |

! |

|

Component i |

Configuration ! |

I,]

' | Component i
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019

Engineering

3

Techniques pretty similar to discovery

Configuration

- Static configuration
- System deployment

Configuration Service

- Service start

Oa. initial configuration

- Dynamic configuration Ob.regier e
Oa. initial configuration 2. update
. . 0Ob. register
- Integrated into service (/ \ \
- Sidecar managed Stont ot L Confiuraton
4. restart
u 5. us:\ 3. update
updated config
3. update state config | Config
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 4

Some new considerations

- Configuration delivery and bootstrapping
- Somewhat sidestepped this on discovery ...

- Secrets
- Shared secrets (HMACs, JWT tokens, ...)

- Access keys (external services)
- (For IaaS$ internal access, should use service or instance roles instead)

- Private keys (TLS server, TLS client authentication)
- How to handle these?

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 5

Bootstrapping problem

How the node
knows where to
fetch
configuration
from?

Configuration

Oa. initial configuration

Ob. register 2. update

Oa. initial configuration 2. update
0b. register
\ \
\ |

Configuration
Sidecar

Client Client <

4. restart

U 5. us:\ 3. update
updated config

config Config

3. update state

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 6

Bootstrapping

- Instances e.g. virtual machines

- Built into machine image (AMI etc.) — very static and cumbersome
to change!

- ”User script” — inject configuration as a runnable script defined
when instance requested (but use cloud-init, see next page)
- Almost all machine images have user script support by default

- Containers
- Build into container image (a bit easier than full machine image)
- Via environment or configuration script via volume mount

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 7

Instance configuration

- Simple bottom line answer:
just use cloud-init

- Installed in Ubuntu images on
AWS, Azure, GCE, ...

- Support in many other tools
(Terraform etc.)

- Helps avoid many common
mistakes

- Build from there

—-*- yaml -*-
package update: true
package upgrade: true
packages:

- nfs-common

- docker.io
swap:

filename: /swap.img

"auto"
5373952000

size:
maxsize:
write files:
- encoding: b64
content: CiMgVGhpcyBma...
owner: root:root

path: /etc/sysconfig/selinux
permissions: '0644'

Aalto University
School of Electrical
Engineering

A

COM-EV Microservice architectures and serverless computing 2019
14.3.2019
8

Level 2 bootstrapping

- Bootstrapping can be - Common sources of 2nd
iterative level bootstrap
- First level hardcoded - S3 bucket
curd - Separate configuration host or
http://config.local/config.sh p) &
- config.local different host on SErvice
different environments - Often with host-based
- Evaluate second level loader discovery for the 21d level
- ... which does something else location
- Very much like cloud-init
A Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 9

user-data
script

per-
instance
script

l

instance
(generic)

machin
image
build script

machine
image

S S

cloud-
init file

per-
instance

instance
(custom)

user data .
atd - instance

(cloud-init
installed)

b

image with Bt

cloud-init

instance

i
S3
bucket
\ fetch config
‘/' (maybe poll)
|
|
- fetch &]
keep up-to-date conflg
' service

L) S —

env vars

container
(custom)

container
(generic)

config
sidecar

conﬂg

Y
I

S3
bucket

N~ @

Y
I

volume

Best practice?

- Nothing that applies to all cases ...

- Instances: Use of cloud-init recommended

- Custom machine image (AMI) a good idea if lots of commonality
between instances — still don’t put specific configuration in there,
parameterize!

- Containers: Environment
Works best if number of configuration items low
If complex configuration, sidecar pattern preferable

Bootstrap sidecar config via environment

School of Electrical 14.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 12

Dynamic configuration

- Facebook and Google extreme examples

- Feature flags dynamically enable/disable functionality
1f (feature x enabled) { .. } else { ..}

- Feature flags are dynamically configurable (via some directory)
- Multivariate flags: on/off based on complex criteria

- Potentially change large portions of service functionality
without code changes or redeployment

- We'll come back to “dark launches” later on deployments
- (Not without its own problems)

School of Electrical 14.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 13

Secrets and sensitive information

- What are ”secrets”?
Cloud infrastructure and 3™ party service access keys

Keys used for HMAC and encryption (signed session token)

Passphrases for asymmetric cryptography private keys (e.g. TLS)
- For any other kind of keystore (Java, Bitcoin, ...)

On-disk encryption keys
- “Secrets” are runtime information
- Should never go into actual service code or configuration

- Injected only when service started, or pulled in as needed

School of Electrical 14.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 14

Secret management approaches

Simplest: inject at instantiation

- E.g. have separate deployment repository (limited access?)

- Secrets injected as user script, environment, etc.

- Problems: user script, env etc. visibility and accessibility (by others)
Inject via orchestration

- Kubernetes secrets

Separate service

- AWS KMS (Key Management System), Azure Key Vault, Google KMS
Extreme end is hardware-based systems (PKCS#11)

- Key material never leaves hardware enclosure

- Limited for signatures, encryption and decryption

School of Electrical 14.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 15

Typical KMS usage

1. Create managed key > key identifier
2. Encrypt secret data using key
- The actual key does not leave KMS!
- E.g. “encrypt ‘supasekrit’ with key id 1234 - ‘7ab76dfe67at77"”
3. Put encrypted secret into configuration (plus key id)
- via environment, user script, directory service etc.
4. Decrypt secret using key
- E.g. “decrypt ‘7ab76dfe67af77’ with key id 1234 = ‘supasekrit
- KMS checks whether requestor has permissions to use the key

%

- Details vary ... (f. ex. direct integration to other cloud services)

School of Electrical 14.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 16

Access keys (within [aaS)

- Cloud provider APIs accept access keys (id + secret)

- AWS ACCESS KEY ID=.. AWS SECRET ACCESS KEY=.. aws ecZ run-
instances ..

- Possible to pass these via previously mentioned configuration methods
- Not recommended to pass access keys directly
- Use instance (or container) roles instead

- Create a role that has required rights
- Assign the role to runtime resource

- Resource can now use APIs as the role!
- (ok actually not that simple, see documentation)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019

Engineering 17

Summary

- Service configuration 2 service discovery
- Share many of the tools (etcd, zookeeper, consul, ...)
- Methods vary from static injection to dynamic configuration
- Applicability depends on requirements and constraints
- Management of sensitive information (“secrets”)
- Operational security aspects
- Separation of secrets from code, also KMS tools
- Local cloud provider’s access keys

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 14.3.2019
Engineering 18

