
Deployments
14.3.2019
Santeri Paavolainen



Previously …

- Assumed that a service or a system magically
- Starts from code on a developer’s machine, and
- turns into artifacts suitable for deployment, and
- gets to being run in a computing environment somewhere.

- During development this not a problem
- Single user system (developer!), no conflicts
- Manual deployment (kubectl apply, ./start.sh)

- … however, in the real world …

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

2





Why deployment relevant?

- Simple business logic
- Customers not served =

$ not generated
- Customers not happy =

$ less in future
- Loss of reputation =

$ less in future
- Two problems

- Maximize service time
- Minimize affected users

- In any way, including corruption

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

4

se
rv

ic
e 

le
ve

l

100%

0%

start deployment

wait for users to drain

updating service

service enabled

user ramp-up

problem detected

ramp-down
service downgraded

ramp-up
(old version) 

service up
(old version)



Corollary:
If you don’t care 
about users, neither 
downtime nor 
correctness matters



General solutions

- Stop-and-go deployment
- Stop the world
- Update
- Start the world

- Service degradation
- Fallback services
- Read-only mode

- Non-stop deployments
- Blue-green deployments
- Canaries etc.

- Minimizing critical intervals
- Database techniques

- Minimizing affected users
- E.g. avoiding big bugs
- Scientist
- Multivariate feature flags

- Later: Destructive changes

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

6



Stop-and-go deployment

- Simplest
- Almost all problems during upgrade are related to state!
- State in stable (not changing) state easiest to handle

- All-or-nothing
- Difficult to test with small number of users (possible, but bad $)
- Rollback affects also everything similarly (stop for rollback)

- Any scripting tool with or without CI/CD works
- Shell scripts (used this with early EC2!)
- Nowadays Puppet, Chef, Fabric, CloudFormation, Terraform, …
- ”kubectl delete -f old.yml; kubectl apply –f new.yml”

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

7



Other loosely coupled services

- Workflow engines & batch processing easier
- Stop and go works pretty well

- Same with any kind of queued service
- If the underlying application is tolerant on delays (e.g. deployment 

length)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

8



Degraded service deployments

- Stop-and-go, except stoppage is hidden from users
- Discussed service degradation earlier

- If a fallback service exists, can use it
- Trigger circuit breaker explicitly (don’t wait for failures)
- Deploy temporary (reduced) service and switch on LB/DNS

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

9



Degraded…: Read-only mode

- Read-only version of service
- Keeps old version running and serving (in read-only mode)

- Avoid data changes when new version being deployed
- Very difficult with monolithic services and “big” frameworks

- Lots of hidden functionality: “user last active” schema, logging, …
- Easier with narrowly defined microservices & dynamic 

configs
- Though propagates to user interface problems (e.g. what if read-

only flag is raised at the end of a long operation?)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

10



version 1
read-only = false

LB
target = 

version 1



version 1
read-only = true

version 2
read-only = false

LB

target = 
version 1



version 1
read-only = true

version 2
read-only = false

LB target = 
version 2

(Viability of RO mode 
rests on cut-over 
between versions being 
faster than underlying 
service upgrade. Which 
is practically always 
true.)



Read-only mode

- Service logic vs. blanket proxy
- Read-only logic built into service itself (if complex logic)
- Blanket proxy blocks POST / PUT / DELETE operations when 

read-only (sidecar or ELB or own reverse proxy)
- Depends on application logic (does GET change state?)

- Redeployment vs. reconfiguration
- Redeploy old version with read-only flag enabled
- With dynamic configuration flag, much, much easier

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

14



Gradual deployments

- Idea: Have old and new version running side-by-side
- Instaneous cut-over (blue-green)
- Gradual migration (canary release)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

15



Blue-green deployments
- Blue-green deployment model (aka red-black)

- Current version is blue
- Deploy new version (green)

- Make sure it is “warm” and has same amount of resources as blue
- Perform cut-over and wait
- Reverse cut-over if problems (fast rollback)

- Pros: no downtime
- Cons

- Requires double the infrastructure during deployment
- Difficult with stateful services
- Dreadful with schema changes (potentially requiring multi-phase upgrades)

- See https://www.ianlewis.org/en/bluegreen-deployments-kubernetes

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

16

https://www.ianlewis.org/en/bluegreen-deployments-kubernetes


version 1version 1 version 2

LB
target = 

version 1

LB

target = 
version 1

version 1 version 2

LB target = 
version 2



Canary release

- Idea: Since there is >0 chance of catastrophic failure, why 
subject all users to that?
- E.g. minimize the amount of affected users

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

18





Canary release
- Idea: Since there is >0 chance of catastrophic failure, why subject all

users to that?
- E.g. minimize the amount of affected users

- Canary users
- Few users à few % à more % à all users
- See if any problems occur è move users back to old version

- Rests on the likelihood of catastrophic failures being
- Detectable quickly (monitoring!)
- Triggered with high likelihood “soon” (lurking bugs difficult)

- Requires system to be able to operate under two different versions
simultaneously

- Stateful services especially with schema changes again very difficult
- Applicable also to multivariate feature flags (“dark launch”)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

20



“I'm going to have to science the shit 
out of this.”
- How about A-B testing your 

code?
- Idea: Run original code, and a

new version, and compare 
results

- “Scientist” originally for Ruby 
(https://github.com/github/sci
entist)

- Publishes results (time, 
discrepancies, exceptions, …) 
for analysis

- Useful for functional code 
(does not modify state)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

21

https://github.com/github/scientist


Destructive 
changes



Destructive what?

- Most often database schema changes
- alter table users alter column fullname varchar(16);

- Many schema changes are reversible
- Should always design changes to be reversible
- Though applies to any persistent data (files, …)

- If you lose information on operational data storage
- Backups and snapshots are your friend
- Start polishing up your resume

Oops! Too 
small!



Protecting your job
- Exercise your recovery methods (so they don’t fail silently)

- Example: deploy new versions from backups of old version
- Code review (e.g. peer review)

- Share the responsibility! (No really, more eyes = better chance of finding 
problems)

- Don’t throw data away until (much) later
- alter table users rename column fullname to fullname_old;

alter table users add column fullname varchar(16);
update users set fullname = fullname_old;

- Test upgrades aggressively
- Use copy of real data, have some sanity testing after upgrading test data

- Implement changes gradually
- Would work on sharded services, not as well now …

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

24



Wait!

- What if service X depends on new version of service Y?
- Should you deploy both at the same time?
- Close coupling on service deployments (what if one fails?)

- Canonical answer would be: 
- either deploy version of X that works with old Y, or 
- deploy new Y so that with backward-compatible interface for X

- This kind of versioning may incur substantial costs
- Lots of effort for very short-lived compatibility issue

- Answer: it depends …



Some tools

- Infrastructure management 
tools somewhat applicable

- Chef, Puppet, Fabric, 
Terraform, CloudFormation

- API gateways increasingly 
support blue/green and canary 
deployments

- AWS API Gateway
- Ambassador (using Envoy)
- Nginx roll-your-own works too
- Plus other OSS and commercial

- Continuous Delivery –
oriented systems

- Spinnaker
- AWS CodeDeploy, Google CD,

Azure Pipelines
- + other hosted CI/CD
- More comprehensive (but less 

wiggle room)

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

26

https://docs.aws.amazon.com/apigateway/latest/developerguide/canary-release.html
https://www.getambassador.io/


Living on the edge
(warning: 
only tangentially related to 
deployments)



Image: Netflix, APL 2.0

https://github.com/Netflix/SimianArmy/blob/master/assets/SimianArmy.png


Chaos engineering
- If your goal is to have fault-

tolerant environments
- … then your environments

should be fault-tolerant
- … even in production
- … so they should not fail even 

when you intentionally 
introduce faults

- ... in production systems!
- Original chaos monkey: 

randomly terminate instances 
in production environment

- Originally developed at Netflix 
- Chaos Monkey, later the whole 

Simian Army
- Now maturing as an 

engineering field
- Breaking Containers: Chaos 

Engineering for Modern 
Applications

- This can be scary
- Fault-injection testing does

increase system reliability

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

29

https://github.com/Netflix/SimianArmy
https://www.youtube.com/watch?v=B1nUzbuVEUs




Summary

- User impact an important consideration for production 
environments

- Deployment mechanism differ on easy ó impact axis
- Stop-and-go
- Service degradation
- Blue-green and canary releases

- Be careful with upgrades changing schema and state!
- Testing your system

- Scientist for testing functional code
- Chaos engineering for testing fault-tolerance

14.3.2019
COM-EV Microservice architectures and serverless computing 2019

31


