CS-E4530 Computational Complexity Theory

Lecture 17: Fine-Grained Complexity, Counting and Beyond
Aalto University
School of Science
Department of Computer Science
Spring 2019

Agenda

- Random-acccess machines
- Hard problems in P?
- Counting complexity
- Towards lower bounds

Limitations of Turing Machines

- Turing machines are impractical for discussing fine-grained complexity
- Turing machines are don't reflect all characteristics of modern computers
- Indeed, Turing machines predate modern computers
- Perfect for computability and coarse-grained complexity (P, NP etc), not so much for fine-grained complexity (e.g. inside P)
- One key limitation: no random access
- For example, reading the i th entry of an array takes at least i steps just due to moving the tape head

RAM Models

- Various random-access machine models address this limitation
- A random access machine has the following features (informally):
- An infinite number of registers, each capable of storing a single number
- A finite instruction set (think assembly language)
- A set of addressing instructions allowing direct access to a register specified by a value of other register
- A specific instruction for halting

Register Values

- One can define different RAM models based on what values the registers can hold:
- Real-number RAM: registers can hold arbitrary real numbers
- Integer RAM: registers can hold arbitrary positive integers
- Word RAM: registers can hold integers of size $O(\log n)$, where n is the length of the input
- The first two models are very powerful, yet useful for discussing upper bounds
- Algorithm design without considering low-level implementation details (which however may be significant in the very-large- n limit)

Time and Space for RAMs

- Time for RAM models:
- Number of elementary instructions executed
- Addressing and number operations $(+,-,=, \leq)$ are assumed to be constant-time operations
- Space for RAM models:
- Number of registers used
- Caveat: real-number and integer RAMs can solve lots of problems in constant space by exploiting unbounded register values; this is not reasonable in practice

Fine-grained Complexity

- Application of RAM models: understanding the complexity landscape inside P
- Let $L \in \mathrm{P}$ be a language
- What is the smallest constant $c \geq 1$ such that L can be solved in time $O\left(n^{c}\right)$ with random-access machines?
- This gives rise to fine-grained complexity

Fine-grained Complexity

- Typical question: what is the relative complexity of problems L_{1} and L_{2} ?
- Typical result: If problem L_{1} can be solved in time $O\left(n^{c-\varepsilon}\right)$ for some specific constant c, then also problem L_{2} can be solved in time $O\left(n^{c-\varepsilon}\right)$
- Here $O\left(n^{c}\right)$ is usually the best currently known upper bound for L_{1} and L_{2}
- This means working with reductions that
- can be computed in significantly faster than $O\left(n^{c}\right)$
- increase the instance size sub-linearly
- Though other variations on the theme are possible

Hard Problems in P?

- Recent work in fine-grained complexity has identified certain problems in P that seem to be 'canonically expressive' in some sense:
- Best known algorithm: $O\left(n^{c}\right)$ for some constant c, up to sub-polynomial factors (this is often denoted $\widetilde{O}\left(n^{c}\right)$).
- Used as a subroutine in best known algorithms for many other problems
- Lower bound $\Omega\left(n^{c}\right)$ would imply that many known algorithms for other problems are optimal
- This is not hardness in a structural complexity sense
- Useful for identifying relationships inside P
- Tells us that we are facing the same algorithmic challenge in many problems

The Three-sum Problem

Given a set S of n numbers, decide if there are distinct numbers $x, y, z \in S$ such that $x+y+z=0$.

- Trivial algorithm: $O\left(n^{3}\right)$
- Easy algorithm: $O\left(n^{2}\right)$ (by sorting and testing pairs)
- Best known algorithm: $O\left(n^{2}(\log \log n)^{O(1)} / \log ^{2} n\right)$
- Open: Is there an $O\left(n^{2-\varepsilon}\right)$ algorithm for any $\varepsilon>0$?

Matrix Multiplication

Given two matrices A and B, compute the matrix product $C=A B$, where

$$
C_{i k}=\sum_{j} A_{i j} B_{j k}
$$

- Trivial algorithm: $O\left(n^{3}\right)$
- Classic algorithm: $O\left(n^{2.81}\right)$ (V. Strassen 1969)
- Best known algorithm: $O\left(n^{2.373}\right)$ (V. Williams 2013, F. Le Gall 2014)
- Open: What is the real-number complexity of matrix multiplication?
- Matrix multiplication is a very expressive problem with lots of applications

Min-Sum Matrix Multiplication

Given two matrices A and B, compute the min-sum matrix product
$C=A B$, where

$$
C_{i k}=\min _{j}\left(A_{i j}+B_{j k}\right)
$$

- Trivial algorithm: $O\left(n^{3}\right)$
- Best known algorithm: $\widetilde{O}\left(n^{3} / 2^{c \sqrt{\log n}}\right)$ for some $c>0$ (R. Williams 2014)
- Open: Is there an $O\left(n^{3-\varepsilon}\right)$ algorithm for any $\varepsilon>0$?

All-pairs Shortest Paths

Given a weighted undirected/directed graph $G=(V, E)$, compute the distance $d(u, v)$ for all pairs of vertices $u, v \in V$.

- Classic algorithm: $O\left(n^{3}\right)$ (R. Floyd, S. Warshall 1962)
- Best known algorithm: $\widetilde{O}\left(n^{3} / 2^{d \sqrt{\log n}}\right)$ for some $d>0$; by $\log n$ applications of min-sum MM
- Open: Is there an $O\left(n^{3-\varepsilon}\right)$ algorithm for any $\varepsilon>0$?
- Closely connected to the complexity of min-sum matrix multiplication

Set Cover with Two Sets

Given a set family S of size n over universe U of size m, decide if there are two sets $S_{1}, S_{2} \in \mathcal{S}$ such that $S_{1} \cup S_{2}=U$.

- Trivial algorithm: $O\left(n^{2} m\right)$
- Open: Is there an $n^{2-\varepsilon} \operatorname{poly}(m)$ algorithm for any $\varepsilon>0$?
- This question connects polynomial-time algorithms to exponential-time algorithms:
- If Set Cover with Two Sets can be solved in time $n^{2-\varepsilon} \operatorname{poly}(m)$, then CNF-SAT has an algorithm with running time $2^{\delta n} \operatorname{poly}(m)$ for some $\delta<2$
- That is, the strong exponential time hypothesis ${ }^{1}$ has consequences for problems in P

[^0]
Counting and Enumeration

- Problems in P and NP can be viewed as decision problems of a specific type:
- The problem is defined by a polynomial-time Turing machine M with two inputs x and y
- The question is whether for a given $x \in\{0,1\}^{*}$, there is some $y \in\{0,1\}^{*}$ with length polynomial in $|x|$ such that $M(x, y)=1$
- We can similarly ask related counting and enumeration questions:
- Counting: Count the number of y such that $M(x, y)=1$
- Enumeration: List all y such that $M(x, y)=1$

Counting and Enumeration

- Enumeration can clearly be very difficult
- The number of certificates y can be exponential in $|x|$
- What about counting?
- If the decision problem is in P , what does this imply about counting?
- Turns out counting is often more difficult than decision

Perfect Matching

Definition (Perfect matching)

- Instance: Bipartite graph $G=(U, V, E)$, where

$$
U=\left\{u_{1}, \ldots, u_{n}\right\}, V=\left\{v_{1}, \ldots, v_{n}\right\}, E \subseteq U \times V
$$

- Question: Is there a set $E^{\prime} \subseteq E$ of n edges such that for any two distinct edges $(u, v),\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}, u \neq u^{\prime}$ and $v \neq v^{\prime}$ (i.e., is there a perfect matching)?
- Polynomial-time algorithms for determining the existence of perfect matchings are well known (a randomised one was presented in an earlier example)
- The related counting problem \#MATCHING is to count the number of perfect matchings in a bipartite graph

Permanent and \#MATCHING

- The perfect matching problem is related to computing the determinant of the (symbolic) adjacency matrix A^{G}. (Is $\operatorname{det}\left(A^{G}\right) \equiv 0$?)
- The counting version is related to the problem of computing the permanent of the adjacency matrix:

$$
\operatorname{perm}\left(A^{G}\right)=\sum_{\pi} \prod_{i=1}^{n} a_{i, \pi(i)}^{G}=\sum_{\pi} a_{1, \pi(1)}^{G} a_{2, \pi(2)}^{G} \ldots a_{n, \pi(n)}^{G}
$$

(Number of nonzero terms in perm $\left(A^{G}\right)$.)

Example

$$
A^{G}=\left(\begin{array}{ccc}
x_{1,1} & x_{1,2} & 0 \\
0 & x_{2,2} & x_{2,3} \\
0 & x_{3,2} & x_{3,3}
\end{array}\right) \quad \begin{aligned}
& \operatorname{perm}\left(A^{G}\right)= \\
& x_{1,1} x_{2,2} x_{3,3}+x_{1,1} x_{2,3} x_{3,2}
\end{aligned}
$$

Counting and Probability

Definition (Graph reliability)

- Instance: An undirected graph $G=(V, E)$, vertices $s, t \in V$.
- Question: Compute the probability that there remains an $s-t$ path if all edges of G fail (i.e. are deleted) simultaneously and independently with probability $1 / 2$.
- Graph reliability can be solved by counting:
- After deletions, the remaining graph can be any subgraph of G with equal probability
- The solution is thus given by counting the subgraphs of G where s and t are connected, and dividing this count by the number of all subgraphs

Class \#P

Definition

A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in \#P (pronounced 'sharp-p' or 'number- p ') if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time Turing machine M such that

$$
f(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right| .
$$

- Are all functions in \#P computable in polynomial time?
- In other words, is \#P = FP?
-FP is the class of functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ computable in polynomial time

\#P-completeness

- Completeness for \#P is defined in terms of oracle reductions
- Generalising prior definitions, a Turing machine with oracle access to function f can obtain a value $f(x)$ in a single time step, assuming it has computed x
- For any function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, we denote by FP ${ }^{f}$ the class of functions computable by polynomial-time Turing machines with oracle access to f

\#P-completeness

Definition
A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is \#P-complete if $f \in \# \mathrm{P}$ and every function $g \in \#$ P is in FP .

Theorem
Iff is \#P-complete and $f \in \mathrm{FP}$, then \# $\mathrm{P}=\mathrm{FP}$.

\#P-completeness

- Some examples of \#P-complete problems:
- \#SAT: counting satisfying assignments for a CNF formula
- \#2-SAT: counting satisfying assignments for a 2-CNF formula (note that the decision version of 2-SAT is in P)
- \#MATCHING and PERMANENT (again the decision version of MATCHING is in P)
- \#HAMILTONIAN-CYCLE
- In particular, counting versions of many problems in P are \#P-complete
- Not everything, though: counting spanning trees is in FP by the 'matrix-tree theorem' from algebraic graph theory

Toda's Theorem

- How powerful is counting exactly?
- Clearly \#P \subseteq PSPACE
- Both PH and \#P are generalisations of NP; what is the relationship between these classes?

Theorem (Toda's theorem, 1991)

$$
\mathrm{PH}=\mathrm{P}^{\mathrm{\# SAT}}
$$

- That is, all problems in PH can be solved in polynomial time with oracle access to a \#P-complete function

Concrete Lower Bounds?

- Proving concrete lower bounds for Turing machines and circuits seems to be out of reach
- Two general lines of research related to this issue:
- Proving lower bounds for restricted models of computation
- Understanding why general lower bounds are difficult

Concrete Lower Bounds

- Examples of models with concrete lower bounds:
- Decision trees: understanding how many input bits we need to check in order to determine the answer
- Communication complexity:
- Alice and Bob are both holding n-bit strings, and want to compute a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$
- How many bits do they have to communicate?
- Monotone circuits: Complexity for circuits without NOT gates

Circuit Lower Bounds

- There are also (fairly weak) circuit lower bounds known
$-\mathrm{AC}^{0}$ is the class of problems solvable by polynomial-size, constant-depth, unbounded fan-in circuits
-ACC is AC^{0} with counters (up to an arbitrary constant m)
- The following represent state of the art:
- The parity function (that is, counting the number of 1 's in the input modulo 2) is not in AC^{0} (J. Håstad 1987)
- NEXP \nsubseteq ACC (R. Williams 2010)
- NQP \nsubseteq ACC (C. Murray \& R. Williams 2018) ${ }^{2}$

[^1]
Barriers: Relativisation

- Can diagonalisation be used to prove $P \neq N P ?$
- Diagonalisation works for undecidability and hierarchy theorems, why not for $P \neq N P$?
- Diagonalisation relies on specific properties of Turing machines
(I) Turing machines can be efficiently represented as strings
(II) Turing machines can be simulated by Turing machines with small overhead

Barriers: Relativisation

- Properties (I) and (II) also hold for oracle Turing machines
- Implies that any statement diagonalisation proves for complexity classes defined in terms of Turing machines, it also proves for complexity classes defined in terms of oracle Turing machines
- This implies a limitation for diagonalisation

Theorem (T. Baker, J. Gill, R. Solovay 1975)
There exist languages A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.

Barriers: Natural Proofs

- Why are circuit lower bounds difficult?
- One can define a notion of natural proof for circuit lower bounds (S. Rudich \& A. Razborov 1994)
- This is a specific, technical notion!
- Most known lower bounds are natural in this sense
- It has been proven that if sufficiently strong one-way functions exist, then natural proofs cannot prove that an explicit function f is not in $P /$ poly
- In summary: there is non-trivial amount of research explaining why certain 'obvious' proof techniques do not work for proving lower bounds

Lecture 17: Summary

- RAM models
- Fine-grained complexity
- Counting complexity and \#P
- Explicit lower bounds for weaker models are known
- Explicit lower bounds for circuits and Turing machines seem difficult to prove

[^0]: ${ }^{1}$ Exponential time hypothesis $(\mathrm{ETH}) \approx$ CNF-SAT cannot be solved in time $2^{o(n)}$. Strong ETH (SETH): there is no constant $c<1$ such that CNF-SAT can be solved in time $2^{c n}$. Here n is the number of variables in the given CNF-SAT instance.

[^1]: ${ }^{2}$ NQP \sim 'nondeterministic quasi-polynomial time', NQP $=\cup_{c>0} N T I M E\left(n^{\log ^{c} n}\right)$

