Agenda

- Random-access machines
- Hard problems in P?
- Counting complexity
- Towards lower bounds
Limitations of Turing Machines

- **Turing machines are impractical for discussing fine-grained complexity**
 - Turing machines don’t reflect all characteristics of modern computers
 - Indeed, Turing machines predate modern computers
 - Perfect for computability and coarse-grained complexity (P, NP etc), not so much for fine-grained complexity (e.g. inside P)

- **One key limitation: no random access**
 - For example, reading the ith entry of an array takes at least i steps just due to moving the tape head
RAM Models

- Various *random-access machine models* address this limitation

- A random access machine has the following features (informally):
 - An infinite number of *registers*, each capable of storing a single number
 - A finite *instruction set* (think assembly language)
 - A set of *addressing* instructions allowing direct access to a register specified by a value of other register
 - A specific instruction for *halting*
Register Values

- One can define different RAM models based on what values the registers can hold:
 - Real-number RAM: registers can hold arbitrary real numbers
 - Integer RAM: registers can hold arbitrary positive integers
 - Word RAM: registers can hold integers of size $O(\log n)$, where n is the length of the input

- The first two models are very powerful, yet useful for discussing upper bounds
 - Algorithm design without considering low-level implementation details (which however may be significant in the very-large-n limit)
Time and Space for RAMs

Time for RAM models:
- Number of elementary instructions executed
- Addressing and number operations (+, −, =, ≤) are assumed to be constant-time operations

Space for RAM models:
- Number of registers used
- Caveat: real-number and integer RAMs can solve lots of problems in *constant* space by exploiting unbounded register values; this is not reasonable in practice
Fine-grained Complexity

- Application of RAM models: understanding the complexity landscape inside \mathbb{P}

- Let $L \in \mathbb{P}$ be a language
 - What is the smallest constant $c \geq 1$ such that L can be solved in time $O(n^c)$ with random-access machines?
 - This gives rise to fine-grained complexity
Fine-grained Complexity

- **Typical question:** what is the *relative complexity* of problems L_1 and L_2?

 - **Typical result:** If problem L_1 can be solved in time $O(n^{c-\varepsilon})$ for some specific constant c, then also problem L_2 can be solved in time $O(n^{c-\varepsilon})$

 - Here $O(n^c)$ is usually the best currently known upper bound for L_1 and L_2

 - This means working with reductions that
 - can be computed in significantly faster than $O(n^c)$
 - increase the instance size sub-linearly

 - Though other variations on the theme are possible
Hard Problems in P?

- Recent work in fine-grained complexity has identified certain problems in P that seem to be ‘canonically expressive’ in some sense:
 - **Best known algorithm**: $O(n^c)$ for some constant c, up to sub-polynomial factors (this is often denoted $\tilde{O}(n^c)$).
 - Used as a subroutine in best known algorithms for many other problems
 - Lower bound $\Omega(n^c)$ would imply that many known algorithms for other problems are optimal

- This is not hardness in a structural complexity sense
 - Useful for identifying relationships inside P
 - Tells us that we are facing the same algorithmic challenge in many problems
The Three-sum Problem

Given a set S of n numbers, decide if there are distinct numbers $x, y, z \in S$ such that $x + y + z = 0$.

- **Trivial algorithm:** $O(n^3)$
- **Easy algorithm:** $O(n^2)$ (by sorting and testing pairs)
- **Best known algorithm:** $O(n^2 (\log \log n)^{O(1)}/\log^2 n)$
- **Open:** Is there an $O(n^{2-\varepsilon})$ algorithm for any $\varepsilon > 0$?
Matrix Multiplication

Given two matrices A and B, compute the matrix product $C = AB$, where

$$C_{ik} = \sum_j A_{ij}B_{jk}.$$

- **Trivial algorithm**: $O(n^3)$
- **Classic algorithm**: $O(n^{2.81})$ (V. Strassen 1969)
- **Best known algorithm**: $O(n^{2.373})$ (V. Williams 2013, F. Le Gall 2014)

- **Open**: What is the real-number complexity of matrix multiplication?

- **Matrix multiplication is a very expressive problem with lots of applications**
Min-Sum Matrix Multiplication

Given two matrices A and B, compute the min-sum matrix product $C = AB$, where

$$C_{ik} = \min_j (A_{ij} + B_{jk}).$$

- **Trivial algorithm:** $O(n^3)$
- **Best known algorithm:** $\tilde{O}(n^3 / 2^c \sqrt{\log n})$ for some $c > 0$ (R. Williams 2014)
- **Open:** Is there an $O(n^{3-\varepsilon})$ algorithm for any $\varepsilon > 0$?
All-pairs Shortest Paths

Given a weighted undirected/directed graph $G = (V, E)$, compute the distance $d(u, v)$ for all pairs of vertices $u, v \in V$.

- **Classic algorithm**: $O(n^3)$ (R. Floyd, S. Warshall 1962)
- **Best known algorithm**: $\tilde{O}(n^{3/d\sqrt{\log n}})$ for some $d > 0$; by $\log n$ applications of min-sum MM
- **Open**: Is there an $O(n^{3-\varepsilon})$ algorithm for any $\varepsilon > 0$?
- Closely connected to the complexity of min-sum matrix multiplication
Set Cover with Two Sets

Given a set family S of size n over universe U of size m, decide if there are two sets $S_1, S_2 \in S$ such that $S_1 \cup S_2 = U$.

- **Trivial algorithm:** $O(n^2m)$
- **Open:** Is there an $n^{2-\varepsilon}\text{poly}(m)$ algorithm for any $\varepsilon > 0$?

This question connects polynomial-time algorithms to exponential-time algorithms:

- If Set Cover with Two Sets can be solved in time $n^{2-\varepsilon}\text{poly}(m)$, then CNF-SAT has an algorithm with running time $2^{\delta n}\text{poly}(m)$ for some $\delta < 2$
- That is, the *strong exponential time hypothesis*\(^1\) has consequences for problems in P

\(^1\)Exponential time hypothesis (ETH) \approx CNF-SAT cannot be solved in time $2^{o(n)}$. Strong ETH (SETH): there is no constant $c < 1$ such that CNF-SAT can be solved in time 2^{cn}. Here n is the number of variables in the given CNF-SAT instance.
Counting and Enumeration

- **Problems in P and NP can be viewed as decision problems of a specific type:**
 - The problem is defined by a polynomial-time Turing machine M with two inputs x and y
 - The question is whether for a given $x \in \{0, 1\}^*$, there is some $y \in \{0, 1\}^*$ with length polynomial in $|x|$ such that $M(x, y) = 1$

- **We can similarly ask related counting and enumeration questions:**
 - *Counting*: Count the number of y such that $M(x, y) = 1$
 - *Enumeration*: List all y such that $M(x, y) = 1$
Counting and Enumeration

- Enumeration can clearly be very difficult
 - The number of certificates y can be exponential in $|x|$;

- What about counting?
 - If the decision problem is in P, what does this imply about counting?
 - Turns out counting is often more difficult than decision
Perfect Matching

Definition (Perfect matching)

- **Instance:** Bipartite graph $G = (U, V, E)$, where $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$, $E \subseteq U \times V$.

- **Question:** Is there a set $E' \subseteq E$ of n edges such that for any two distinct edges $(u, v), (u', v') \in E'$, $u \neq u'$ and $v \neq v'$ (i.e., is there a perfect matching)?

- Polynomial-time algorithms for determining the existence of perfect matchings are well known (a randomised one was presented in an earlier example).

- The related counting problem #MATCHING is to count the number of perfect matchings in a bipartite graph.
Permanent and #MATCHING

- The perfect matching problem is related to computing the determinant of the (symbolic) adjacency matrix A^G. (Is $\text{det}(A^G) \equiv 0$?)
- The counting version is related to the problem of computing the permanent of the adjacency matrix:

$$\text{perm}(A^G) = \sum_{\pi} \prod_{i=1}^{n} a^G_{i,\pi(i)} = \sum_{\pi} a^G_{1,\pi(1)} a^G_{2,\pi(2)} \ldots a^G_{n,\pi(n)}$$

(Number of nonzero terms in $\text{perm}(A^G)$.)

Example

$$A^G = \begin{pmatrix} x_{1,1} & x_{1,2} & 0 \\ 0 & x_{2,2} & x_{2,3} \\ 0 & x_{3,2} & x_{3,3} \end{pmatrix} \quad \text{perm}(A^G) = x_{1,1}x_{2,2}x_{3,3} + x_{1,1}x_{2,3}x_{3,2}$$
Counting and Probability

Definition (Graph reliability)

- **Instance:** An undirected graph $G = (V, E)$, vertices $s, t \in V$.
- **Question:** Compute the probability that there remains an s–t path if all edges of G fail (i.e. are deleted) simultaneously and independently with probability $1/2$.

Graph reliability can be solved by counting:

- After deletions, the remaining graph can be any subgraph of G with equal probability
- The solution is thus given by counting the subgraphs of G where s and t are connected, and dividing this count by the number of all subgraphs
Class $\#P$

Definition

A function $f : \{0, 1\}^* \rightarrow \mathbb{N}$ is in $\#P$ (pronounced ‘sharp-p’ or ’number-p’) if there exists a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time Turing machine M such that

$$f(x) = |\{y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1\}|.$$

Are all functions in $\#P$ computable in polynomial time?

- In other words, is $\#P = FP$?
- FP is the class of functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computable in polynomial time
#P-completeness

- **Completeness for #P is defined in terms of oracle reductions**
 - Generalising prior definitions, a Turing machine with oracle access to function f can obtain a value $f(x)$ in a single time step, assuming it has computed x
 - For any function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, we denote by FP^f the class of functions computable by polynomial-time Turing machines with oracle access to f.
#P-completeness

Definition
A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is **#P-complete** if $f \in \text{#P}$ and every function $g \in \text{#P}$ is in FP^f.

Theorem

*If f is #P-complete and $f \in \text{FP}$, then $\text{#P} = \text{FP}$.***
#P-completeness

- **Some examples of #P-complete problems:**
 - **#SAT**: counting satisfying assignments for a CNF formula
 - **#2-SAT**: counting satisfying assignments for a 2-CNF formula
 (note that the decision version of 2-SAT is in P)
 - **#MATCHING** and **PERMANENT** (again the decision version of MATCHING is in P)
 - **#HAMILTONIAN-CYCLE**

- **In particular, counting versions of many problems in P are #P-complete**
 - Not everything, though: counting spanning trees is in FP by the ’matrix-tree theorem’ from algebraic graph theory
Toda’s Theorem

- How powerful is counting exactly?
 - Clearly $\text{NP} \subseteq \text{PSPACE}$
 - Both PH and NP are generalisations of NP; what is the relationship between these classes?

Theorem (Toda’s theorem, 1991)

$$\text{PH} = \text{P}^{\text{#SAT}}$$

- That is, all problems in PH can be solved in polynomial time with oracle access to a NP-complete function
Concrete Lower Bounds?

- Proving concrete lower bounds for Turing machines and circuits seems to be out of reach

- Two general lines of research related to this issue:
 - Proving lower bounds for restricted models of computation
 - Understanding why general lower bounds are difficult
Concrete Lower Bounds

- Examples of models with concrete lower bounds:
 - **Decision trees**: understanding how many input bits we need to check in order to determine the answer
 - **Communication complexity**:
 - Alice and Bob are both holding n-bit strings, and want to compute a function $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$
 - How many bits do they have to communicate?
 - **Monotone circuits**: Complexity for circuits without NOT gates
Circuit Lower Bounds

- There are also (fairly weak) circuit lower bounds known:
 - AC^0 is the class of problems solvable by polynomial-size, constant-depth, unbounded fan-in circuits.
 - ACC is AC^0 with counters (up to an arbitrary constant m).

- The following represent *state of the art*:
 - The parity function (that is, counting the number of 1's in the input modulo 2) is not in AC^0 (J. Håstad 1987).
 - $\text{NEXP} \not\subseteq \text{ACC}$ (R. Williams 2010).
 - $\text{NQP} \not\subseteq \text{ACC}$ (C. Murray & R. Williams 2018).\(^2\)

\(^2\)NQP \sim 'nondeterministic quasi-polynomial time', $\text{NQP} = \bigcup_{c>0} \text{NTIME}(n^{\log^c n})$
Barriers: Relativisation

- Can *diagonalisation* be used to prove $P \neq NP$?
 - Diagonalisation works for undecidability and hierarchy theorems, why not for $P \neq NP$?

- Diagonalisation relies on specific properties of Turing machines
 1. Turing machines can be efficiently represented as strings
 2. Turing machines can be simulated by Turing machines with small overhead
Barriers: Relativisation

Properties (I) and (II) also hold for oracle Turing machines

- Implies that any statement diagonalisation proves for complexity classes defined in terms of Turing machines, it also proves for complexity classes defined in terms of oracle Turing machines
- This implies a limitation for diagonalisation

Theorem (T. Baker, J. Gill, R. Solovay 1975)

There exist languages A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
Barriers: Natural Proofs

- Why are *circuit lower bounds* difficult?

- One can define a notion of *natural proof* for circuit lower bounds (S. Rudich & A. Razborov 1994)
 - This is a specific, technical notion!
 - Most known lower bounds are natural in this sense
 - It has been proven that if sufficiently strong one-way functions exist, then natural proofs cannot prove that an explicit function f is not in P/poly

- In summary: there is non-trivial amount of research explaining why certain ‘obvious’ proof techniques do not work for proving lower bounds
Lecture 17: Summary

- RAM models
- Fine-grained complexity
- Counting complexity and \#P

- Explicit lower bounds for weaker models are known
- Explicit lower bounds for circuits and Turing machines seem difficult to prove