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Foreword 

This is a workbook for experimental design exercises in Matlab®. It was written as a supporting 
document for the courses organized at the School of Chemical Engineering at Aalto University. 
Performing design calculations in Matlab®, or other numerical computing software, is very 
useful for understanding the principles of experimental design and linear regression models. 
Ready-made functions and faster sequences of commands exist, but this workbook was written 
as didactical support. Professional design software are also available and are very valuable for 
the experienced user. However, the more novice user can easily end up memorizing sequences 
of program menus without actually understanding what is going on.  

This workbook is largely based on the one originally written by Prof. Paul Geladi at the Swedish 
University of Agricultural Sciences in Umeå, Sweden in 2009. The calculations were performed 
using Matlab® (ver. 9.3, R2017b, The MathWorks, Inc.) with the Statistics and Machine 
Learning Toolbox (ver. 11.2) installed. However, open source alternatives do exist.  Some 
functions might not be the same or can be missing depending on your setup. Workspace 
variables, commands and Matlab® outputs are given in bold as are vectors and matrices 
included in equations or in the text. If you have comments, or you find inconsistencies in this 
workbook, please contact me by e-mail at mikko.makela@aalto.fi. 

Background literature 

Box G.E.P., Draper N.R., Empirical model-building and response surfaces (1st ed.). John 
Wiley & Sons Inc, New York, 1987. 

Box G.E.P., Hunter J.S., Hunter W.G., Statistics for experimenters (2nd ed.). John Wiley & 
Sons Inc, Hoboken, New Jersey, 2005. 

Myers R.H., Montgomery D.C., Anderson-Cook C.M., Response surface methodology – 
process and product optimization using designed experiments (3rd ed.). John Wiley & Sons 
Inc, Hoboken, New Jersey, 2009. 

Ryan T.P., Modern experimental design (1st ed.). John Wiley & Sons Inc, Hoboken, New 
Jersey, 2007. 
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1. Model building 

1.1  Design matrix and coding 
This example is from Leardi (2009). A chemical company was interested in the effects of three 
reagents A, B and C (g) on the viscosity of a polymer (103 mPa s), which should be higher than 
46 × 103 mPa s. They performed a full factorial design. In general, designs can be written as 
matrices where the experiments are given as rows and the variables or factors as corresponding 
columns. The design matrix in original units, Xori, can be written as: 

>> Xori=[9 3.6 9; 11 3.6 9; 9 4.4 9; 11 4.4 9; 9 3.6 11; 11 3.6 11; 
9 4.4 11; 11 4.4 11] 
Xori = 
    9.0000    3.6000    9.0000 
   11.0000    3.6000    9.0000 
    9.0000    4.4000    9.0000 
   11.0000    4.4000    9.0000 
    9.0000    3.6000   11.0000 
   11.0000    3.6000   11.0000 
    9.0000    4.4000   11.0000 
   11.0000    4.4000   11.0000 
 
where the semicolon separates different rows. The first column of X now describes the values 
of reagent A, the second column reagent B and so on. The corresponding viscosity values were: 

>> y=[51.8 51.6 51.0 42.4 50.2 46.6 52.0 50.0]' 
y = 
   51.8000 
   51.6000 
   51.0000 
   42.4000 
   50.2000 
   46.6000 
   52.0000 
   50.0000 
 
where the apostrophe transposes the row vector into a column. The design matrix is generally 
coded. This is done by scaling all the maximum and minimum values of a factorial design to 1 
and -1, respectively. The first column of the coded design, X, can be obtained by: 

>> (Xori(:,1)-min(Xori(:,1)))/(range(Xori(:,1))/2)-1 
ans = 
    -1 
     1 
    -1 
     1 
    -1 
     1 
    -1 
     1  
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In a similar way, the entire X can be obtained by: 
 
>> X=[(Xori(:,1)-9)/1-1 (Xori(:,2)-3.6)/0.4-1 (Xori(:,3)-9)/1-1] 
X = 
   -1.0000   -1.0000   -1.0000 
    1.0000   -1.0000   -1.0000 
   -1.0000    1.0000   -1.0000 
    1.0000    1.0000   -1.0000 
   -1.0000   -1.0000    1.0000 
    1.0000   -1.0000    1.0000 
   -1.0000    1.0000    1.0000 
    1.0000    1.0000    1.0000 
 
Notice the symmetry in the columns. Factorial designs are orthogonal. You can visualize this 
by drawing the design on a piece of paper. Or you can test it for the first two columns by: 

>> X(:,1)'*X(:,2) 
ans = 
     0 
 
which is the cosine angle between the first and the second column. The product of a column 
with itself is the square of the length of the vector, which is a constant. Thus, multiplying the 
transpose of X with X should provide a diagonal matrix, where all the other elements are zero: 

>> X'*X 
ans = 
    8.0000         0         0 
         0    8.0000         0 
         0         0    8.0000  
 
Questions: 

- How is orthogonality explained geometrically? 
- Why is orthogonality important for a design? 

1.2  Estimating main effects 
Now we need to decide which kind of model we want to build. The idea is to separate systematic 
variation in y from noise. If we only want to estimate the average main effects of the reagents, 
a linear regression equation can be written as: 

𝑦 = 𝛽$ +	𝛽'𝑥' +	𝛽)𝑥) + 𝛽*𝑥* + 𝑒       (1) 

where 𝛽$ denotes the average value of y in the design center, 𝛽', 𝛽) and 𝛽*the coefficients that 
describe the average effects of the variables, 𝑥', 𝑥) and 𝑥* the coded values of the variables and 
𝑒 the model residual attributed to noise. In matrix notation this equation becomes: 

𝐲 = 𝐗𝐛 + 𝐞          (2) 
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where y is a vector of response values, X is the coded design matrix, b is the model vector and 
e a vector of residuals. It can be shown that a linear regression model that minimizes the sum 
of squared residuals can be determined by: 

𝐛 = 	 (𝐗𝐓𝐗)3𝟏𝐗𝐓𝐲        (3) 

which is called the least-squares estimate of b. For our example, a column of ones first needs 
to be added to X: 

>> X1=[ones(8,1) X] 
X1 = 
    1.0000   -1.0000   -1.0000   -1.0000 
    1.0000    1.0000   -1.0000   -1.0000 
    1.0000   -1.0000    1.0000   -1.0000 
    1.0000    1.0000    1.0000   -1.0000 
    1.0000   -1.0000   -1.0000    1.0000 
    1.0000    1.0000   -1.0000    1.0000 
    1.0000   -1.0000    1.0000    1.0000 
    1.0000    1.0000    1.0000    1.0000 
 
Then the model vector: 

>> b1=inv(X1'*X1)*X1'*y 
b1 = 
   49.4500 
   -1.8000 
   -0.6000 
    0.2500 
 
Due to coding, the variable effects are now comparable within the design range. A bar chart 
illustrates the model coefficients: 

>> bar(b1(2:4));  
>> set(gca,'xticklabel',{'b1','b2','b3'}) 
 

 
Fig. 1: The estimated main effects of the reagents on polymer viscosity. 
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The regression model can now be used to calculate the predicted values of y and the residuals 
e, see Eq. (2): 

>> y1hat=X1*b1 
y1hat = 
   51.6000 
   48.0000 
   50.4000 
   46.8000 
   52.1000 
   48.5000 
   50.9000 
   47.3000 
 
>> e1=y-y1hat 
e1 = 
    0.2000 
    3.6000 
    0.6000 
   -4.4000 
   -1.9000 
   -1.9000 
    1.1000 
    2.7000 
 
Compare the observed and predicted values: 

>> [y y1hat] 
ans = 
   51.8000   51.6000 
   51.6000   48.0000 
   51.0000   50.4000 
   42.4000   46.8000 
   50.2000   52.1000 
   46.6000   48.5000 
   52.0000   50.9000 
   50.0000   47.3000 
 
Questions: 

- What does a positive or negative effect mean? 
- What does b(1) describe? 
- How is a coefficient value related to a change in y within the design range? 
- What can be done with the residuals? 
- Is there a suitable way to compare the observed and predicted values? 

1.3 Estimating main effects and their interactions 
Factorial designs enable estimating variable interactions. With two variables the respective 
regression equation would look like: 

𝑦 = 𝛽$ +	𝛽'𝑥' +	𝛽)𝑥) + 𝛽')𝑥'𝑥) + 𝑒      (4) 
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In our case this requires creating the corresponding columns from X. With three variables there 
are three possible two-variable interactions and an interaction for all three variables: 

>> X2=[ones(8,1) X X(:,1).*X(:,2) X(:,1).*X(:,3) X(:,2).*X(:,3) 
X(:,1).*X(:,2).*X(:,3)] 
X2 = 
    1.0000   -1.0000   -1.0000   -1.0000    1.0000    1.0000    
1.0000   -1.0000 
    1.0000    1.0000   -1.0000   -1.0000   -1.0000   -1.0000    
1.0000    1.0000 
    1.0000   -1.0000    1.0000   -1.0000   -1.0000    1.0000   -
1.0000    1.0000 
    1.0000    1.0000    1.0000   -1.0000    1.0000   -1.0000   -
1.0000   -1.0000 
    1.0000   -1.0000   -1.0000    1.0000    1.0000   -1.0000   -
1.0000    1.0000 
    1.0000    1.0000   -1.0000    1.0000   -1.0000    1.0000   -
1.0000   -1.0000 
    1.0000   -1.0000    1.0000    1.0000   -1.0000   -1.0000    
1.0000   -1.0000 
    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    
1.0000    1.0000 
 
where the dot before the asterisk denotes direct multiplication. Now a model that includes the 
main effects and their interactions: 

>> b2=inv(X2'*X2)*X2'*y 
b2 = 
   49.4500 
   -1.8000 
   -0.6000 
    0.2500 
   -0.8500 
    0.4000 
    1.9000 
    1.2500 
 
This model contains eight terms based on a factorial design with eight experiments. Write down 
the regression equation based on Eq. (4) and make the same calculations and plots as in Section 
1.2. A normal probability plot can be used to illustrate the significance of the coefficients, but 
it should only be used with factorial designs. First sort the coefficients and build a vector of 
probabilities: 

>> b2s=sort(b2(2:end)) 
b2s = 
   -1.8000 
   -0.8500 
   -0.6000 
    0.2500 
    0.4000 
    1.2500 
    1.9000 
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>> prob=((1:7)-0.5)/7 
prob = 
    0.0714    0.2143    0.3571    0.5000    0.6429    0.7857    
0.9286 
 
The probabilities 7 to 93% fit in the range of -2 to 2 standard deviations. Plot the probabilities 
against the coefficients: 

>> plot(b2s,prob,'o') 
>> ylabel('Probability'); xlabel('Coefficients')  
 

 
Fig. 2: A normal probability plot of the model coefficients. 

Find the values of the model coefficients in Fig. 2 and make a similar plot of all of the 
residuals.  

Questions: 

- Were there large and significant interactions? 
- Was this model better? Why? 
- Are the main effect estimates still the same? 
- How is the probability plot used with the coefficients and the residuals? What is the 

null hypothesis? 
- Why can it only be used with coefficients from factorial designs? 

1.4  Using real values 
The models can also be determined based on the original real values. Recall the design matrix 
in original units, Xori: 
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    9.0000    4.4000    9.0000 
   11.0000    4.4000    9.0000 
    9.0000    3.6000   11.0000 
   11.0000    3.6000   11.0000 
    9.0000    4.4000   11.0000 
   11.0000    4.4000   11.0000 
 
Add a column of ones and determine a main effect model: 

>> X3=[ones(8,1) Xori] 
X3 = 
    1.0000    9.0000    3.6000    9.0000 
    1.0000   11.0000    3.6000    9.0000 
    1.0000    9.0000    4.4000    9.0000 
    1.0000   11.0000    4.4000    9.0000 
    1.0000    9.0000    3.6000   11.0000 
    1.0000   11.0000    3.6000   11.0000 
    1.0000    9.0000    4.4000   11.0000 
    1.0000   11.0000    4.4000   11.0000 
 
>> b3=inv(X3'*X3)*X3'*y 
b3 = 
   70.9500 
   -1.8000 
   -1.5000 
    0.2500 
 
Calculate the predicted values: 

>> y3hat=X3*b3 
y3hat = 
   51.6000 
   48.0000 
   50.4000 
   46.8000 
   52.1000 
   48.5000 
   50.9000 
   47.3000 
 
Questions: 

- Compare the predicted values with those in Section 1.2, are they the same? 
- Why is the mean term b(1) different from that of the coded levels? 
- What happens for the other regression coefficients? 
- Can you think of situations where the coded or uncoded levels would be preferable? 

1.5  Response surfaces 
Contour plots and response surfaces are ideal for visualizing the predictions as a function of 
variable levels. This can be done with coded or real values. This example uses coded values 
and the interaction model from Section 1.3. 
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For plotting the response surface a grid needs to be created. Since we are using coded values, a 
range from -1 to 1 with a step of 0.2 can be convenient: 

>> hor=ones(11,1)*(-1:0.2:1) 
hor = 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
   -1.0000   -0.8000   -0.6000   -0.4000   -0.2000         0    
0.2000    0.4000    0.6000    0.8000    1.0000 
 
 >> ver=(-1:0.2:1)'*ones(1,11) 
ver = 
   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -
1.0000   -1.0000   -1.0000   -1.0000   -1.0000 
   -0.8000   -0.8000   -0.8000   -0.8000   -0.8000   -0.8000   -
0.8000   -0.8000   -0.8000   -0.8000   -0.8000 
   -0.6000   -0.6000   -0.6000   -0.6000   -0.6000   -0.6000   -
0.6000   -0.6000   -0.6000   -0.6000   -0.6000 
   -0.4000   -0.4000   -0.4000   -0.4000   -0.4000   -0.4000   -
0.4000   -0.4000   -0.4000   -0.4000   -0.4000 
   -0.2000   -0.2000   -0.2000   -0.2000   -0.2000   -0.2000   -
0.2000   -0.2000   -0.2000   -0.2000   -0.2000 
         0         0         0         0         0         0         
0         0         0         0         0 
    0.2000    0.2000    0.2000    0.2000    0.2000    0.2000    
0.2000    0.2000    0.2000    0.2000    0.2000 
    0.4000    0.4000    0.4000    0.4000    0.4000    0.4000    
0.4000    0.4000    0.4000    0.4000    0.4000 
    0.6000    0.6000    0.6000    0.6000    0.6000    0.6000    
0.6000    0.6000    0.6000    0.6000    0.6000 
    0.8000    0.8000    0.8000    0.8000    0.8000    0.8000    
0.8000    0.8000    0.8000    0.8000    0.8000 
    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    
1.0000    1.0000    1.0000    1.0000    1.0000 
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As we have three variables one needs to be set to a constant level for creating a two-
dimensional contour plot. Remember the regression equation with three variables from 
Section 1.3. The third variable is used at its zero level, which eliminates a lot of terms from 
the equation. Calculate the altitude of the contours, the multiplication between hor and ver 
needs to be a direct one: 

>> alt=b2(1)+b2(2)*hor+b2(3)*ver+b2(5)*hor.*ver 
alt = 
   51.0000   50.8100   50.6200   50.4300   50.2400   50.0500   
49.8600   49.6700   49.4800   49.2900   49.1000 
   51.0500   50.8260   50.6020   50.3780   50.1540   49.9300   
49.7060   49.4820   49.2580   49.0340   48.8100 
   51.1000   50.8420   50.5840   50.3260   50.0680   49.8100   
49.5520   49.2940   49.0360   48.7780   48.5200 
   51.1500   50.8580   50.5660   50.2740   49.9820   49.6900   
49.3980   49.1060   48.8140   48.5220   48.2300 
   51.2000   50.8740   50.5480   50.2220   49.8960   49.5700   
49.2440   48.9180   48.5920   48.2660   47.9400 
   51.2500   50.8900   50.5300   50.1700   49.8100   49.4500   
49.0900   48.7300   48.3700   48.0100   47.6500 
   51.3000   50.9060   50.5120   50.1180   49.7240   49.3300   
48.9360   48.5420   48.1480   47.7540   47.3600 
   51.3500   50.9220   50.4940   50.0660   49.6380   49.2100   
48.7820   48.3540   47.9260   47.4980   47.0700 
   51.4000   50.9380   50.4760   50.0140   49.5520   49.0900   
48.6280   48.1660   47.7040   47.2420   46.7800 
   51.4500   50.9540   50.4580   49.9620   49.4660   48.9700   
48.4740   47.9780   47.4820   46.9860   46.4900 
   51.5000   50.9700   50.4400   49.9100   49.3800   48.8500   
48.3200   47.7900   47.2600   46.7300   46.2000 
 
Now plot the contours: 

>> C=contourf(hor,ver,alt); 
>> clabel(C,'backgroundcolor','white') 
>> xlabel('x1'); ylabel('x2') 
 

 
Fig. 3: A contour plot of polymer viscosity as a function of reagents A and B based on the 
interaction model. 
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As shown in Fig. 3, there seems to be no problem in reaching the target viscosity of >46 × 103 
mPa s with these settings if the predictions are reliable. Now make the same plot using the real 
values. Draw the design on a piece of paper and figure out which part of it was plotted. 

Questions: 

- How would you evaluate the reliability of a response contour? 
- How can you calculate the exact predicted value in a specific location? 

2. Diagnostics 

2.1  Testing significance of coefficients 
This example is from Box et al. (2005), pp. 177. The effects of temperature, concentration and 
catalyst type on product yield during a set of pilot experiments were determined using a full 
factorial design. The design using coded values: 

>> X=[-1 -1 -1; 1 -1 -1; -1 1 -1; 1 1 -1; -1 -1 1; 1 -1 1; -1 1 1; 1 
1 1]; 
 
where the semicolon in the end of the command hides the output. Duplicate experiments 
provided the following average yields: 

>> y=[60 72 54 68 52 83 45 80]'; 
 
We will start with an interaction model: 

>> X1=[ones(8,1) X X(:,1).*X(:,2) X(:,1).*X(:,3) X(:,2).*X(:,3) 
X(:,1).*X(:,2).*X(:,3)]; 
 
And the least-squares estimate of b: 

>> b1=inv(X1'*X1)*X1'*y 
b1 = 
   64.2500 
   11.5000 
   -2.5000 
    0.7500 
    0.7500 
    5.0000 
         0 
    0.2500 
 
A bar chart illustrates the coefficients: 

>> bar(b1(2:end)) 
>> set(gca,'xticklabel',{'b1','b2','b3','b12','b13','b23','b123'}) 
>> hold 
Current plot held 
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Fig. 4: A bar chart of the coefficients. 

2.1.1 Using replicates 
As illustrated in Fig. 4, some of the coefficients are small or zero. In order to know which ones 
to exclude we need to estimate their significance. For this we need an error estimate either based 
on replicate experiments or model residuals. In this first example we are going to use replicates. 
The following response values were attained from the replicates: 

>> y1=[59 74 50 69 50 81 46 79]'; 
>> y2=[61 70 58 67 54 85 44 81]'; 
 
The values and their mean are thus: 

>> [y1 y2 y] 
ans = 
    59    61    60 
    74    70    72 
    50    58    54 
    69    67    68 
    50    54    52 
    81    85    83 
    46    44    45 
    79    81    80 
 
Now we can use these values for estimating their variance. The difference of the first set of 
experiments from the mean is: 

>> y1-y 
ans = 
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     1 
    -1 
 
And the respective sum of squares: 

>> SS1=(y1-y)'*(y1-y) 
ans = 
    32 
 
Now the sum of squares of the second set: 

>> SS2=(y2-y)'*(y2-y) 
ans = 
    32 
 
The variance can be obtained as a pooled estimate corrected for the remaining degrees of 
freedom. We had a total of sixteen observations but calculated the means of eight duplicates, 
so there are eight degrees of freedom left. The variance: 

>> s2y=(SS1+SS2)/8 
s2y = 
     8 
 
The variance of the coefficients can be calculated based on the diagonal of the covariance 
matrix 𝜎)(𝐗𝐓𝐗)3' where 𝜎) is the error estimate. A square root gives the standard errors: 

>> seb1=sqrt(s2y*diag(inv(X1'*X1))) 
seb1 = 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
 
Now we can use the Student’s t test with the null hypothesis that a coefficient equals zero. 
The t statistic is: 

>> z1=(b1-0)./seb1 
z1 = 
   64.2500 
   11.5000 
   -2.5000 
    0.7500 
    0.7500 
    5.0000 
         0 
    0.2500 
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which should be compared with the t distribution with the corresponding degrees of freedom. 
Using a = 0.10 could be appropriate here so the probability limit value for the t distribution 
which is double-sided is: 

>> tinv(0.95,8) 
ans = 
    1.8595 
 
Now which coefficients are likely to be something else than noise? It is helpful to visualize 
the distribution: 

>> x=-5:0.05:5; 
>> figure, plot(x,tpdf(x,8)) 
>> ylabel('Probability density') 
 

 
Fig. 5: The t distribution with eight degrees of freedom. 

As illustrated in Fig. 5, we are more confident on accepting the alternative hypothesis that a 
coefficient is different from zero if the t statistic is closer to the extremes of the distribution. 
Confidence limits can also be calculated: 

>> b1ci=tinv(0.95,8)*seb1 
b1ci = 
    1.8595 
    1.8595 
    1.8595 
    1.8595 
    1.8595 
    1.8595 
    1.8595 
    1.8595 
 
Now plot these in the earlier bar chart: 

>> errorbar(b1(2:end),b1ci(2:end),'linestyle','none') 
 

-5 -4 -3 -2 -1 0 1 2 3 4 5
Standard deviation from the mean

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pr
ob

ab
ilit

y 
de

ns
ity



 
 

17 

 
Fig. 6: A bar char of the coefficients with the respective confidence intervals (a = 0.10). 

As illustrated in Fig. 6, temperature, concentration and the interaction between temperature and 
catalyst type had a significant effect on product yield. We might then be confident on removing 
the insignificant terms from the model. However, if a variable is included in an important 
interaction, it cannot be removed. 

2.1.2 Using model residuals 
The error estimate for testing the coefficients can also be obtained from the model residuals. In 
this case it makes sense to treat the replicates as separate experiments and add the corresponding 
rows into the design matrix. The design matrix then becomes: 

>> X=[X;X]; 

And the corresponding y values were: 

y=[y1;y2]; 

We then need to determine the model vector that can be used for calculating the predicted y 
values and the model residuals as before. The design matrix for an interaction model now has 
sixteen rows instead of eight: 

X1=[ones(16,1) X X(:,1).*X(:,2) X(:,1).*X(:,3) X(:,2).*X(:,3) 
X(:,1).*X(:,2).*X(:,3)]; 

And the model vector: 

>> b1=inv(X1'*X1)*X1'*y 
b1 = 
   64.2500 
   11.5000 
   -2.5000 
    0.7500 
    0.7500 

b1 b2 b3 b12 b13 b23 b123
-6
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    5.0000 
         0 
    0.2500 
 
The model vector is then used for calculating the predicted values of y:  
 
>> y1hat=X1*b1; 
 
And the model residuals are obtained as the difference between the measured and predicted 
values: 
 
>> e1=y-y1hat; 
 
The sum of squares of the residuals is then simply: 
 
>> SSres1=e1'*e1 
SSres1 = 
    64 
 
The variance of the residuals can then be obtained by dividing the residual sum of squares with 
the respective degrees of freedom. There were sixteen original experiments and seven model 
coefficients in addition to the mean term, so there must be 16-(7+1) degrees of freedom left for 
the residual: 
 
>> MSres1=SSres1/8 
MSres = 
     8 
 
The standard errors of the coefficients can now be calculated as with the replicate example by 
using the variance of the residuals instead of the replicates:  
 
>> seb1=sqrt(MSres1*diag(inv(X1'*X1))) 
seb1 = 
    0.7071 
    0.7071 
    0.7071 
    0.7071 
    0.7071 
    0.7071 
    0.7071 
    0.7071 
 
What happens with the standard errors when the residuals are used instead of the replicates? 
How can this be if the sum of squares and the variances stay the same in both examples? What 
happens with the variance estimates when you start removing coefficients from the model? 
Calculate the confidence intervals and plot them with the coefficients as in the previous 
example. 
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Questions: 

- How do the degrees of freedom and a level affect the confidence intervals? 
- Was the use of a = 0.10 appropriate for calculating confidence intervals? 
- The variance can also be estimated based on the model residuals. Are there problems 

with doing this based on saturated designs? What happens with the degrees of freedom? 

2.2  Analysis of variance (ANOVA) 
In this example we will use the data from Section 2.1.2. Use a model with the significant terms, 
the design matrix: 

>> X2=[ones(16,1) X X(:,1).*X(:,3)]; 
 
And the model vector: 

>> b2=inv(X2'*X2)*X2'*y; 
 
The principle of ANOVA with regression models is to compare the variation explained by the 
model against noise, i.e., the part not explained by the model. To do this, we need to know how 
much variation there is to begin with. Thus, the total sum of squares of y: 

>> SStot=(y-mean(y))'*(y-mean(y)) 
SStot = 
        2699 
 
Now we want to distribute this to the model and the residuals. It is easy to start with the 
residuals. First determine the predicted values and then the residuals: 

>> y2hat=X2*b2; 
>> e2=y-y2hat 
e2 = 
   -0.5000 
    1.5000 
   -4.5000 
    1.5000 
   -1.0000 
   -3.0000 
         0 
         0 
    1.5000 
   -2.5000 
    3.5000 
   -0.5000 
    3.0000 
    1.0000 
   -2.0000 
    2.0000 
  
Now the sum of squares of the residuals: 
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>> SSres2=e2'*e2 
SSres2 = 
    74 
 
The sum of squares are additive. Thus, the model sum of squares is: 

>> SSmod2=SStot-SSres2 
SSmod2 = 
        2625 
 
ANOVA is based on the F test, which compares the mean square of the model against the mean 
square of the residuals based on the respective degrees of freedom. The null hypothesis is that 
all coefficients equal zero. The alternative hypothesis is that at least one coefficient does not 
equal zero and the model explains something else than noise.  

The degrees of freedom are also additive. So, if there were sixteen observations in total from 
which we calculated the mean, there are fifteen degrees of freedom left for the model and the 
residuals. In addition to the mean term there are four terms in the model so the mean square: 

>> MSmod2=SSmod2/4 
MSmod2 = 
  656.2500 
 
This leaves eleven degrees of freedom for the residual: 

>> MSres2=SSres2/11 
MSres2 = 
    6.7273 
 
The mean squares are used for calculating the F ratio: 

>> F=MSmod2/MSres2 
F = 
   97.5507 
 
which is then compared with the F distribution based the respective degrees of freedom. A 
distinct distribution exists for all combinations of degrees of freedom and it is helpful to 
visualize the distribution: 

>> x=0:0.01:7; 
>> plot(x,fpdf(x,4,11)) 
>> ylabel('Probability density'); xlabel('F ratio') 
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Fig. 7: The F distribution with four and eleven degrees of freedom. 

As illustrated in Fig. 7, we are more comfortable in accepting the alternative hypothesis if the 
F ratio is large. In our case there seems to be no problem, the F distribution is one-sided and 
the probability limit value for a = 0.05 is: 

>> finv(0.95,4,11) 
ans = 
    3.3567 
 
The ANOVA is generally summarized in a table such as Table 1 below. See which parameters 
are additive and which are not. The mean squares of the individual model terms can also be 
determined and p values can be used.  

Table 1: An ANOVA table based on the previous example. 

Source Degrees of 
freedom 

Sum of 
squares 

Mean Square F ratio 

Total 
corrected 

15 2700   

Model 4 2630 656 97.6 

Residual 11 74.0 6.73  

 

Questions: 

- What was the null hypothesis? Is this a useful hypothesis? 
- The mean of the response values was not included in the ANOVA. Are there 

situations where this should also be tested? 
- Is the significance of a model enough, or should we also look at something else? 
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- What is an ideal number of degrees of freedom for the residual? 

2.3  Coefficient of determination 
It is useful of quantify how much of the original variation the model actually explains. This can 
be done through the coefficient of determination, the R2 value. The calculation is based on the 
sum of squares. With the data from Section 2.2, the R2 value is simply: 

>> R2=SSmod2/SStot 
R2 = 
    0.9726 
 
Or: 

>> R2=1-SSres2/SStot 
R2 = 
    0.9726 
 
The R2 is always in the range 0-1. The value determined above indicates that the model explains 
97% of the variation in y around its mean. It can also be useful to plot the predicted values 
against the observed ones: 

>> plot(y,y2hat,'o') 
>> axis('image'); refline(1,0) 
>> ylabel('Predicted'); xlabel('Observed') 
 

 
Fig. 8: Predicted vs. observed based on the model from Section 2.2. 

If the R2 value would equal 1, all the points would lie on the straight line in Fig. 8.  

Questions: 

- Are R2 values of 0 or 1 realistic in practical situations? 
- Can you think of any weaknesses in using the R2?  
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2.4  Residuals 
Model residuals are useful for identifying potential outlier experiments or other anomalies. 
Remember that a residual describes the difference between the observed and the predicted 
value. Recall the residuals from Section 2.2: 

>> e2 
e2 = 
   -0.5000 
    1.5000 
   -4.5000 
    1.5000 
   -1.0000 
   -3.0000 
         0 
         0 
    1.5000 
   -2.5000 
    3.5000 
   -0.5000 
    3.0000 
    1.0000 
   -2.0000 
    2.0000 
 
Different plots can be used. As an example, the residuals can be plotted against experiment or 
row number in the design: 

>> exp=(1:1:16)';  
>> subplot(2,2,1), plot(exp,e2,'o') 
>> title('(a)'); ylabel('Residual'); xlabel('Experiment'); 
refline(0,0) 
 
Or a hypothetical run order: 

>> runOrder=randperm(length(exp))'; 
>> [runOrder_sorted,index]=sort(runOrder); 
>> e2_sorted=e2(index,:); 
>> subplot(2,2,2), plot(runOrder,e2_sorted,'o') 
>> title('(b)'); ylabel('Residual'); xlabel('Run order'); 
refline(0,0) 
 
Raw residuals are however not the most useful. A normal probability shows normally 
distributed residuals on a line: 

>> e2_sorted2=sort(e2) 
>> prob=((1:length(e2_sorted2))-0.5)/length(e2_sorted2) 
>> subplot(2,2,3), plot(e2_sorted2,prob,'o') 
>> title('(c)'), ylabel('Probability'), xlabel('Residual') 
 
Standardized residuals can also be used. The mean square of the residuals provides an estimate 
of model error and its square root is convenient for standardization: 
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>> e2s=e2./sqrt(MSres2) 
e2s = 
   -0.1928 
    0.5783 
   -1.7350 
    0.5783 
   -0.3855 
   -1.1566 
         0 
         0 
    0.5783 
   -0.9639 
    1.3494 
   -0.1928 
    1.1566 
    0.3855 
   -0.7711 
    0.7711 
 
>> subplot(2,2,4), plot(exp,e2s,'o') 
>> title('(d)'); ylabel('Standardized residual'); 
xlabel('Experiment'); refline(0,0) 
 

 
Fig. 9: (a) Model residuals based on experiment number, (b) residuals based on run order, 
(c) a normal probability plot of the residuals and (d) standardized residuals based on 
experiment number. 
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Questions: 

- What kind of properties are expected of the residuals? 
- How can the normal probability plot or standardized residuals be used to identify 

potential outliers? 
- Can signs of non-linearity be detected? 
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