

Formalism adapted to the book "Probabilistic robotics", Thrun, Burgard, Fox (2005)

Graph

- Directed or undirected
- Nodes are robot poses
- Links are either
 - consecutive poses OR
 - features sensed through measurement

NLS FINNISH GEOSPATIAL RESEARCH INSTITUTE FGI

ville.lehtola@nls.fi

Icons made by Freepik www.flaticon.com CC 3.0 BY

Learning goal

$$J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$$

Graph SLAM

• Learning goals

 $J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_{t} [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_{t} [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$

- Graph construction and optimization
- Case forest SLAM
- Advanced topics

Why Graph SLAM?

- The use and formulation of constraints
 - Measurement constraints integrate the meas. model
 - Motion constraints integrate the motion model
 - e.g. post-processing noisy data in laboratory
- Ability to build large scale global maps
 - Sparse graph, motion constraints build linearly in time
 - Eased loop closure
 - Amount of landmarks may be very large, > 1000

 $J_{graphSLAM} = \frac{x_0^T \Omega_0 x_0^T}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [x_t - g(u_t, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [x_t - g(u_t, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \frac{\sum_t [x_t - g(u_t, x_t)] Q^{-1} [x_t - g(u_t, x_t)]}{x_0^T + \sum_t [x_t - g(u_t, x_t)]}$

Initial or anchor constraint

Graph SLAM vs other SLAM

- GraphSLAM is in post-processing phase
 - After the data is captured, offline / batch algorithm
 - Full access to all data
 - Solve the full SLAM problem
- Other SLAM
 - Online / real-time / continuous-time
 - Need fast processing, cannot access all data
 - Extended Kalman Filter, EKF SLAM

 $J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$

ville.lehtola@nls.fi

Over all time steps

Graph-SLAM idea (2)

- Build a graph to represent the problem.
 - Every node in the graph corresponds to a pose of the robot during mapping
 - Every edge between two nodes corresponds to a spatial constraint between them
- Once we have the graph, we optimize the most likely map of the environment by correcting the nodes
 - minimize the error introduced by the constraints
 - Motion, measurement

State space S

- Robot state: position and orientation $x_t \in S$
- Cf. Physical particle (state: position and momentum)
- Thought experiment: Robot so small it would be an aerosol, a particle in the air, scout the space with diffusion
- How to discretize S so that the problem is computationally tractable?

Motion constraint (1)

- We control the robot
- Discretize the state space w.r.t. time Δt , or by saying that there can be only one state per traveled distance D_0

Motion constraint (2)

- Used controls tell us how the robot should move
 - Translational velocity v_t
 - Rotational velocity ω_t
 - Turn radius r= $|v_t / \omega_t|$

ω

Motion constraint (3)

- When the robot changes its state from $x_{\scriptscriptstyle 0}$ to $x_{\scriptscriptstyle 1}$
- Does the state change satisfy the motion constraint?
- Motion model: g
 - Models updates to the state vector
 - Translational velocity v₁
 - Angular velocity ω_1
 - Linearized with Taylor expansion so that current state estimate μ_t may be used

Measurement constraint (1)

- When the robot sees the landmark $m_{\scriptscriptstyle 1}$ from $x_{\scriptscriptstyle 2}$
 - Measurement model: h
 - Landmark m_1 with signature s_1
 - Observer position x₂
- Compare the measurement z_2 against the previously known position of m_1
 - Is m_1 at the same range r and at the same viewing angle Φ ?
 - But is it the same landmark than before?
 - correspondence

Measurement constraint (2)

 Range: Landmark observation is a bit like a 1D spring in a springmass model

 X_{2}

X₂

 X_2

Uncertainties

- At beginning, state uncertainties are at the highest level
- Uncertainties are reduced through constraints, and iteration
- Graph building, trade-off
 - If the state space is sufficiently dense, the motion model linearization is more likely to work
 - If the state space is sufficiently dense, the measurement model is more likely to map, and correspond, the landmarks correctly
 - If the state space is too dense, CPUtime cost becomes high

Bayesian scheme (1)

- Revision of basics
- Bayes' theorem
 - P(A|B) is a conditional probability, given B
 - The next state
 - P(A) is the prior (marginal probability)
 - The previous state
 - P(B|A) is the likelihood given A
 - Constraints
 - P(B) is the normalization factor
 - constant

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Bayesian scheme (2)

- Updating the previous states 1:t-2 with measurement and motion constraints gives the next states 1:t-1
- Obtain states 1:t as a posterior distribution
 Next states 0:t
 Previous states 1:t-1

Bayesian scheme (3)

- Obtain the final states 1:t as a recursive posterior of all the previous states 1,2,3... t-1
- Stack all measurement and motion constraints

 $p(y_{0:t}|z_{1:t}, u_{1:t}, c_{1:t}) = \eta p(y_0) \prod_{t} p(x_t|x_{t-1}, u_t) \prod_{i} p(z_t^i|y_t, c_t^i) \longrightarrow \text{Also Gaussian}$ $p(x_t|x_{t-1}, u_t) = \eta \exp(\frac{-1}{2}(x_t - g(u_t, x_{t-1}))^T R_t^{-1}(x_t - g(u_t, x_{t-1})))$

• (Also change signs, since log(p) < 0 , because 0 < p < 1)

$$\log p(y_{0:t}|z_{1:t}, u_{1:t}, c_{1:t}) = const. + \log p(y_0) + \sum_{t} \log p(x_t|x_{t-1}, u_t) + \sum_{i} \log p(z_t^i|y_t, c_t^i)$$

$$...$$

$$J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_{t} [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_{t} [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$$

$$Our \ goal$$

$$ville.lehtola@nls.fi$$

 $\begin{array}{c} x_0 \\ x_1 \end{array}$

2D odometry & 2D landmarks

Spherical environment constraint (1)

Fig. 11. Pose-graph obtained by simulating a robot moving on a sphere. Left: Initial configuration. Right: After optimizing the pose graph the sphere has accurately been recovered by Algorithm 2.

Image: A Tutorial on Graph-Based SLAM, Grisetti et al.

Spherical environment constraint (2)

- Simulated SLAM
- Measurement model:
 - Laser observations form a spherical surface

Graph SLAM with forest data (1)

- Problem: Tree foliage causes GNSS errors
 - Acquired trajectory &
 3D point cloud is noisy
- Solution: GraphSLAM
 - Correct trajectory

Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V. V., Jaakkola, A., & Hyyppä, J. (2017). Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS Journal of Photogrammetry and Remote Sensing, (132, 199-209.

Graph SLAM with forest data (2)

- Nodes: the trajectory is formulated as a graph where the poses at consecutive timestamps (200 Hz in our case) and the detected features at certain time instance (captured as a mean of the feature points' timestamps) form the nodes
- Edges (or constraints) between the nodes are formed from the measured relative transformations between them.

Tree trunks are circular

Assumption makes a model

-0

Circular constraint alters the trajectory, and thence the landmark observations

3

8

Graph SLAM with forest data (3)

- Construct the graph: the trajectory is expressed as poses.
 - Optimize the graph, i.e. correct the trajectory, iterate until convergence
 - Measurement model constraint: See if tree stems appear as circles from above
 - Motion model constraint: consecutive timestamps (200 Hz), no control signals
 - Result: 6 cm mean error in absolute tree stem locations

A horizontal slice of data at 3–3.5 m height (purple) from the detected ground was used as an input for the tree stem detection. Also: > 10 cm diameter, > 0.3 *360 deg arc length

Graph SLAM with forest data (4)

- Method limitations
- Correspondence of landmarks
 - Which points belong to which trees?
 - What happens
 - if D \rightarrow d?

Graph SLAM with forest data (5)

- Method limitations:
 - observations from different trees need to be separable
 - i.e. initial correspondences must be good
 - Ergo: method fails in a dense forest where the distances between trees are smaller and the trajectory noise is larger

Information matrix Ω (1)

- Inverse of the covariance matrix
- Connected to the information vector

$$\Omega = \Sigma^{-1}$$

$$\xi = \Sigma^{-1} \mu = \Omega \mu$$

Information matrix Ω (2)

• Graph links are represented in matrix

Information matrix Ω (3)

Landmark correspondencies

• Linearize:

•
$$J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(y_t, c_t^i)] Q^{-1} [z_t - h(y_t, c_t^i)]$$

Quadratic and linear in x_{t}

Quadratic and linear in y₁

- Collect quadratic terms to Ω and linear to ξ

$$J_{graphSLAM} = const - \frac{1}{2} y_{0:t}^{T} \Omega y_{0:t} + y_{0:t}^{T} \xi$$

Voilà!

Solving GraphSLAM

GraphSLAM graph
 Levenberg-Marquardt

$$J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(y_t, c_t^i)] Q^{-1} [z_t - h(y_t, c_t^i)]$$

$$F = \operatorname{argmin}_{\alpha} \sum_{i=1}^{m} [y_i - f(x_i, \alpha)]^2$$

- Parameter vector α
- Damped least squares

• (or use conjugate gradient or gradient descent)

Loop closures (1)

- We see that $x_6 = x_1!$
- Hence, there is a loop in the graph
- But how do we actually recognize that x₆=x₁?

"Victoria Park, Fig 1" Kümmerle, Rainer, et al. "g 2 o: A general framework for graph optimization." Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011.

Loop closures (3)

Sünderhauf, Niko, and Peter Protzel. "Switchable constraints for robust pose graph SLAM." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.

15

Loop closures (4)

Sünderhauf, Niko, and Peter Protzel. "Switchable constraints for robust pose graph SLAM." Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.

Pose matching

$$J_{graphSLAM} = x_0^T \Omega_0 x_0^T + \sum_{t} [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_{t} [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$$

 $[z_t - h(y_t, c_t^i)] \rightarrow [x_i - f(u_{ij}, x_j)]$

We can match any 2 poses:

=> Pose match check for x_i and x_i

- We can replace the landmark function h() with a pose-match function f()
 - e.g. occupancy gridbased, vision

Pose matching (2) Graph of key maps

Fig. 3. Graph of key-maps along the route of the robot.

- Laser system
- Global map and local maps
- Each state is represented by a local 2D occupancy grid
- Visual feature techniques used to search for correspondences

Gil, A., Juliá, M., & Reinoso, Ó. (2015). Occupancy grid based graph-SLAM using the distance transform, SURF features and SGD. Engineering Applications of Artificial Intelligence, 40, 1-10.

3D pointclouds (1)

- "Each point is a landmark" $E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2$
 - Forget correspondence, use iterative closest point (ICP)
 - rotation&translation
 - Correct the trajectory

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2007). 6D SLAM—3D mapping outdoor environments. Journal of Field Robotics, 24(8-9), 699-722.

Lehtola, V. V., et al. "Localization corrections for mobile laser scanner using local support-based outlier filtering." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 3 (2016): 81.

3D pointclouds (2)

- "Each point is a landmark"
 - Need to downsample!
 - But how to overcome local minima in energy function minimization?
 - ICP does not work, it is greedy

3D pointclouds (3)

- Build an error function to evaluate different curve pieces
 - Always pick the best
- Obtain trajectory
 estimate for ICP!

Lehtola, Ville V., et al. "Localization of a mobile laser scanner via dimensional reduction." ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016): 48-59.

3D pointclouds (4)

- "Each point is a landmark"
 - Bend the trajectory with curve-pieces
 - Bend again with different characteristic length
 - Apply ICP
 - Done

Lehtola, Ville V., et al. "Localization of a mobile laser scanner via dimensional reduction." ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016): 48-59.

More information

- A Tutorial on Graph-Based SLAM http://www2.informatik.uni-freiburg.de/~stachnis /pdf/grisetti10titsmag.pdf
- Book: "Probabilistic robotics", Thrun, Burgard, and Fox

Available methods

- g2o: A General Framework for Graph Optimization https://openslam.org/g2o.html
- C++ code, LGPL v3, Open source
- Others: TreeMap, TORO, sqrt(SAM), iSAM, Sparse Pose Adjustment, iSAM2

Graph SLAM – learning summary

- GraphSLAM solves the full SLAM problem offline
 - Measurement constraints integrate the measurement model
 - Landmarks
 - Motion constraints integrate the motion model
 - Data from controls not necessarily needed (use IMU or smoothing)
- Ability to build large scale global maps
 - Sparse graph, motion constraints build linearly in time
 - Eased loop closure
 - Amount of landmarks may be very large, > 1000

 $J_{graphSLAM} = \frac{x_0^T \Omega_0 x_0^T}{x_0^T + \sum_t [x_t - g(u_t, x_{t-1})] R^{-1} [x_t - g(u_t, x_{t-1})]} + \sum_t [z_t - h(m_{c_t}, x_t)] Q^{-1} [z_t - h(m_{c_t}, x_t)]$

Initial or anchor constraint