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Lecture 7: NP-Complete Problems
Topics:
I Proving NP-completeness
I Compendium of fundamental problems

• 3-SAT
• 0/1 Integer Programming
• Maximum Independent Set
• k-colouring and Chromatic Number
• Maximum Clique
• Minimum Vertex Cover
• Minimum Dominating Set

I Other NP-complete problems
I Decision versus search

Notes:
I You should be familiar with the concept of polynomial-time reductions and the idea

of how they are used in proving NP-completeness results.
I You should be familiar with the most commonly appearing NP-complete problems.

These include at least the list above plus Set Cover, Hamiltonian Cycle, TSP.
I You should be able to design simple NP-completeness reductions. This includes

being able to choose a good starting problem from among the well-known ones.
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Lecture 8: More NP-Complete Problems

Topics:
I More variants of satisfiability
I More graph-theoretic problems
I Sets and numbers

Notes:
I Continuing the list of need-to-know problems: Max Cut, Subset Sum, Knapsack,

Bin Packing.
I You should know that 2-SAT is in P. It is also good to have an understanding of how

the algorithm for this works.
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Lecture 9: Beyond NP

Topics:
I Class coNP
I Structure of P, NP and coNP
I The Polynomial Time Hierarchy
I Classes EXP and NEXP

Notes:
I You should be familiar with the complexity classes listed above and their

relationships.
I You should know examples of complete problems in coNP and (other) classes in

the polynomial time hiearchy, i.e. Σ
p
k , Π

p
k for k = 1,2, . . . .

I You should know that P 6= EXP and NP 6= NEXP and understand how these
separations are established.

I You should know about the existence of NP-incomplete problems if P 6= NP
(Ladner’s Theorem).
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Lecture 10: Space and Alternation

Topics:
I Space complexity
I Classes PSPACE and NPSPACE
I Logspace reductions
I Class NL
I Alternation

Notes:
I You should know about the relationships between time and space complexity

classes, how they are interleaved, and how their relations are established in simple
cases (e.g. NP ⊆ PSPACE, PH ⊆ PSPACE).

I You should know that PSPACE = NPSPACE (Savitch’s Theorem) and NL = coNL
(Immerman-Szlepcsenyi Theorem).

I You should know complete problems for PSPACE (TQBF) and NL (PATH).
I You should be familiar with the concept of alternating Turing machines and know

how time-, space- and alternation-based complexity classes are interleaved. Also
the relationship between alternating polynomial time classes and the polynomial
time hierarchy.
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Lecture 11: Hierarchy Theorems

Topics:
I Time hierarchy theorem
I Space hierarchy theorem
I Consequences of hierarchy theorems

Notes:
I You should know the statements of the basic time and space hierarchy theorems,

be able to apply the concept to establish broad complexity class separations (e.g.
P ( EXP), and prove some version of the time hierarchy theorem (e.g.
DTIME(f (n))( DTIME(f (n)2)) by simulation and diagonalisation.
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Lecture 12: Randomised Computation

Topics:
I Modelling randomised computation
I Probabilistic complexity classes
I Example: Polynomial identity testing
I Error reduction

Notes:
I You should be familiar with the basic randomised complexity classes (ZPP, RP,

BPP), their definitions, and relations to both each other and the nearby
deterministic and nondeterministic classes (P, NP, coNP, Σ

p
2, Π

p
2).

I You should know how error reduction in randomised computation by repeated runs
and Chernoff bounds works and be able to apply the technique.
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Lecture 13: Approximation

Topics:
I Optimisation Problems
I Approximation Algorithms
I PTAS and FPTAS
I Hardness of Approximation
I On the PCP Theorem

Notes:
I You should know the concepts of a polynomial-time approximation algorithm,

approximation ratio, PTAS and FPTAS.
I You should be familiar with the most common examples of polynomial-time

approximation: Vertex Cover, Set Cover, symmetric metric TSP, including the
proofs of the approximation ratios.

I You should know the concept of a probabilistically checkable proof, the PCP
characterisation of complexity class NP, and the consequences of the PCP
theorem to the nonapproximability of MAX-3SAT and Independent Set.
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Lecture 14: Other Approaches to Intractable Problems

Topics:
I Case studies: MinVC and MaxIS
I Parameterisation
I Exact exponential algorithms
I Other approaches

Notes:
I You should be familiar with the notions of parameterised algorithms and

fixed-parameter tractability, and able to present some simple example (e.g.
parameterised vertex cover).

I You should be familiar with the notion of exact exponential algorithms, the key
examples (e.g. CNF-SAT, TSP) and questions there, together with the Exponential
Time Hypothesis and the Strong Exponential Time Hypothesis.
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Lecture 15: Circuit Complexity
Topics:
I Boolean circuits
I Polynomial circuits
I Uniform circuits
I Turing machines with advice
I Circuit lower bounds
I Circuits and parallel computation

Notes:
I You should be familiar with the notion and formalism(s) for Boolean circuits and

able to present and analyse some simple examples.
I You should be familiar with the notion of nonuniform computation, the complexity

class P/poly, and its characterisation both in terms of circuit families and
nonuniform Turing machines (= Turing machines with advice).

I You should know and be able to prove the result that there exist n-bit Boolean
functions with circuit complexity Ω(2n/n). (In fact almost all n-bit Boolean functions
have this complexity.)

I You should be familiar with the notion of uniform circuit families and their relation to
deterministic complexity classes (e.g. uniform P/poly = P).

I You should be familiar with the results BPP⊆ P/poly and SAT ∈ P/poly⇒ Σ
p
2 = Π2

2.
I You should be familiar with the complexity classes NC and AC, and NCd and ACd

for d = 0,1,2, . . .
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Lecture 16: Cryptography

Topics:
I Encryption schemes
I Computational security
I One-way functions
I Public-key encryption schemes

Notes:
I You should be familiar with the notions of an encryption scheme and perfect and

computational security.
I You should know and be able to prove the result that the one-time pad scheme has

perfect secrecy.
I You should be familiar with the notion of one-way functions, some candidates for

such, and the fact that one-way functions can only exist if P 6= NP.
I You should be familiar with the notion of public-key encryption and the RSA

encryption scheme.
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Lecture 17: Fine-Grained Complexity, Counting and
Beyond

Topics:
I Random-acccess machines
I Hard problems in P?
I Counting complexity
I Towards lower bounds

Notes:
I You should be familiar with the notion of fine-grained complexity and some key

examples (the three-sum problem, matrix multiplication, min-sum matrix
multiplication).

I You should be familiar with the notions of a counting problem, the complexity class
#P, #P-completeness and some key examples (#SAT, #2SAT, #MATCHING).

I You should know how to reduce #MATCHING counting problem to computing
matrix permanents.

I You should know that PH = P#P (Toda’s Theorem).
I You should be familiar with the notion of relativised computation, relativised

complexity classes, and the Baker-Gill-Solovay result on conflicting relativisations
of the “P = NP?” problem.


