# Anaerobic treatment of water and waste

Asst.Prof. Marika Kokko (marika.kokko@tuni.fi)

21.3.2019, Biological treatment processes of water and waste



### Content

- Basics of anaerobic treatment
- Possible feedstocks
- Process technology and important parameters
- Process types
- Examples of anaerobic treatment

### **Microorganisms in anaerobic treatment**





### Hydrolytic bacteria

- Polymeric compounds do not access the cell membrane
  - $\rightarrow$  Bacteria excrete enzymes that degrade polymers to smaller units
- Enzymes degrading different polymers

| Polymer   | Enzyme    |
|-----------|-----------|
| Cellulose | Cellulase |
| Protein   | Protease  |
| Lipid     | Lipase    |
| Starch    | Amulase   |
| Chitin    | Chitinase |

• Dissolved smaller molecules are transferred through the bacterial cell wall and they are used as a source of carbon and energy



### Acidogenic bacteria

- Acidogenic bacteria oxidize the amino acids, sugars and long chain fatty acids formed in hydrolysis (= fermentation)
- The end products consist of
  - Volatile fatty acids (VFAs)
  - Alcohols
  - $H_2$  and  $CO_2$
- There are various different acidogenic bacteria
  - Obligate and facultative anaerobes
  - Clostridia are important group of acidogenic bacteria





### Acetogenic bacteria

- Acetogenesis = reaction producing acetate
- Hydrogen consuming acetogenic bacteria

 $4 H_2 + 2 HCO_3^- + H^+ \rightarrow CH_3COOH + 4 H_2O, \qquad \Delta G^\circ = -104,6 \text{ kJ/reaktio}$ 

• Hydrogen producing acetogenic bacteria

Butyrate<sup>-</sup> + 2 H<sub>2</sub>O  $\rightarrow$  2 acetate<sup>-</sup> + H<sup>+</sup> + 2 H<sub>2</sub> Propionate<sup>-</sup> + 3 H<sub>2</sub>O  $\rightarrow$  acetate<sup>-</sup> + HCO<sub>3</sub><sup>-</sup> + 3 H<sub>2</sub> + H<sup>+</sup>



### Methanogens

• <u>Hydrogen oxidizing methanogens</u>

 $\mathrm{CO}_2 + 4 \ \mathrm{H}_2 \rightarrow \mathrm{CH}_4 + 2 \ \mathrm{H}_2 \mathrm{O}$ 

- Remove hydrogen from the system, i.e. keep the hydrogen partial pressure low due to which hydrogen producing reactions become energetically beneficial
- <u>Acetate degrading methanogens</u>

 $CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3^-$ 

### **Possible feedstocks**

- Agricultural residues
  - Manure
  - Crop residues
- Municipalities
  - Sewage sludge
  - Biowaste

- Industrial biowaste and by-products
  - Food industry
  - Pulp and paper industry
- Energy crops

#### Tampere University

### Important feedstock characteristics

- Solids content (total solids, TS)
- Organic matter content (volatile solids, VS)
- Chemical oxygen demand (COD)
- Composition: lipids, carbohydrates, proteins, lignin
- Methane production potential
- Nutrient content: nitrogen, phosphorous, potassium, micronutrients
- Physical and chemical characteristics: size, pH, potential toxins/inhibitive substances, impurities, non-degradable organic matter, fibers
- Pathogens, organic pollutants



### Important feedstock characteristics

- Feedstock charcteristics may vary because of various reasons
  - Industrial wastes and by-products
    - Changes in process
    - Seasonal variation
    - Changes in raw-materials
  - Municipalities
    - Population increse/decrase
    - Consumption changes
    - Changes in waste management system, e.g. collection
    - Season, temperature



### Pathogens and contaminants in feedstock

- When the feedstock is human or animal originated waste (e.g. slaughterhouse waste, sewage sludge) strict regulations for digestate use
- Salmonella, foot and mouth disease, mad cow disease...
- Indicator organisms usually analyzed (bacterial coliforms, *E.coli*, salmonella)
- Thermophilic AD process (55 °C) more eficient for pathogen removal than mesophilic (35 °C)
- Traceability of each digestate or digestate product important
- Heavy metals, traces from medicines, microplastics?

### **Composition of the feedstock**

- Detemines the methane production potential
- Affects the degradation mechanism and rate
- Affects to potential process inhibition

- Long chain fatty acids (LCFA) from lipids
- Ammonia from proteins (nitrogen rich)

|               | Biogas<br>(m³/t) | Methane<br>(m <sup>3</sup> /t) | Methane<br>conc. (%) |
|---------------|------------------|--------------------------------|----------------------|
| Carbohydrates | 830              | 415                            | 50.0                 |
| Lipids        | 1444             | 1014                           | 70.2                 |
| Proteins      | 793              | 504                            | 63.6                 |

### Inhibiting compounds in anaerobic treatment

• Mechanisms

- Nonionized form of a compound penetrates the cell wall and affects the cell growth and functions (NH<sub>3</sub>, H<sub>2</sub>S, acetic acid, propionic acid)
- Mechanical: prevents transfer of compounds to the microbes (e.g. LCFA)
- Anaerobic processes are more sensitive to inhibition than aerobic processes
  - Growth of methanoges is slow (especially acetate degrading methanogens)
- Due to inhibition, microbial growth slows down
  - Does not necessarily prevent wastewater treatment, but leads to decrased OLRs

# Examples of inhibiting compounds and their concentrations

| Compound           | Inhibiting<br>concentration (mg/L) | Inhibiting effect (activity %<br>from control sample) |
|--------------------|------------------------------------|-------------------------------------------------------|
| Sulfite            | 125                                | 50                                                    |
| Sulfide            | 50                                 | 10-50                                                 |
| Pentachlorophenol  | 0.2                                | 50                                                    |
| 2,5-dichlorophenol | 600                                | 100                                                   |
| Resin acids        | 40-90                              | 50                                                    |
| Tannins            | 350-700                            | 50                                                    |
| Dithionate         | 1500                               | 99                                                    |

### **Decreasing problems related to inhibition**

- Removing inhibiting compound
  - Removing the waste fraction

- Removing the inhibiting compounds in pretreatment
- Precipitation or stripping in the process

- Diluting the inhibiting compound
  - Co-treatment of waste fractions
  - Dilution of wastewater, i.e. recirculation
- Adaptation of microbes
  - Adding inhibiting compounds gradually
  - Using specific microbial populations

# Feedstock and its characteristics will affect to the whole biogas process design

• Affects

- Process technology
- Population of microorganisms in the process
- Process stability
- Biogas composition and yield
- Digestate characteristics
- Digestate processing
- Hygienization



### Municipal and industrial sewage sludges

Municipal sewage sludge

- Anaerobic digestion traditional technology to treat sewage sludge
- Pathogens and heavy metals (Cd) may hinder the digestate use
- In wastewater treatment plants sewage sludge is at 2-4 % TS
- When transported to biogas plant, dewatered to 20-30 % TS
- Industrial sewage sludge
  - Characteristics vary depending on the industry
  - Sewage sludge from food industry is often easily degradable, e.g. sludge from fat separation process
  - Sewage sludge from forest industry difficult to degrade because of lignin and cellulose



### **Municipal biowaste**

- Kitchen and gardening waste
- Biowastes can be different, e.g. in central Europe a lot of gardening waste included
- The aim of source separation is to obtain pure waste fraction (however, impurities are always included)
- Typically: TS 25-30 %, VS/TS 60-90 %
- Conventionally composted (consumes energy)

#### Tampere University

### Industrial wastes and by-products

- Large variety of different wastes
- Food industry
  - Plant originated: vegetables, fruits, etc.  $\rightarrow$  good degradability, no contaminants
  - Dairy industry: production of e.g. milk, butter, yoghurt, cheese
  - Brewing industry: bioethanol production
- Meat processing: slaughterhouses, rendering plants
  - Fats and proteins, high methane production but potential inhibition (LCFA, ammonia)
  - Animal by-product regulates the use



### Manure

- Cow manure
  - Low methane production potential (already degraded in rumen)
  - Good buffer capacity
  - Methane and N<sub>2</sub>O emissions can be reduced in anaerobic digestion process (GHGs)

#### • Pig manure

- Higher methane production potential
- Often quite large units
- Low C:N ratio (~6)
- Poultry manure
  - Dry, up to 60% TS
  - High nitrogen content, danger to inhibition



### Anaerobic wastewater treatment

- Often for strong (COD > 1000 mg/L) and warm industrial wastewater that do not contain inhibiting compounds
  - Food industry, brewerys, distilleries
- Also for
  - Wastewater that are more difficult to treat, e.g. pulp and paper industry wastewaters
  - Municipal wastewaters in warm countries, mainly in developing countries where it enables wastewater treatment



### Nutrients in the feed – nitrogen

- Important growth nutrient for plants
- In anaerobic digestion process, organic nitrogen is mineralized to ammonium (in digestate >50 % as NH<sub>4</sub>), which is readily available for plants
  - However, specially the unionized form (NH<sub>3</sub>) is one of the most common inhibitors of anaerobic digestion process
  - If ammonium from digestate cannot be utilized, may result in high load to wastewater treatment
- Safe C/N ratio for feedstock ~20–30
  - Co-digestion of nitrogen rich substrate with other (low N) feedstocks may be needed
  - Nirtogen rich feedstocks include e.g.; slaughterhouse and rendering plant wastes, fish waste (protein rich feedstocks), manures



### Nutrients in the feed - phosphorus

- Important growth nutrient for plants
- Phosphorus resources are decreasing?
  - Biogas technology could be one way to recover and recycle phosphorus from waste streams
- Not causing inhibition in biogas process in usual concentrations
- Phosphorus rich feedstocks include: Manures, wastewaters, sewage sludges...

# Nutrients in the feed – potassium and micronutrients

Potassium

- Also an important nutrient, possible to recover in digestates
- Micronutrients (e.g. Fe, Mg, Co, Na...)
  - Necessary for anaerobic micro-organisms, but also inhibitive in too high concentrations
  - Some feedstocks may lack of micronutrients, or nutrients are not bioavailable
    - E.g. Rendering plant wastes, crops, municipal biowaste
    - Co-digestion or additives is a possible solution



### **Process operation – important parameters**

- Organic loading rate (OLR)
  - Treatment of waste: kgVS/m<sup>3</sup>d





### **OLR and HRT**

- OLR determines the size of the reactor
- The aim is to maximize the OLR, while keeping the process stable and controlling the amount of methane produced after the reactor
- The OLR (usual OLR 1-8 kgVS/m<sup>3</sup>d) is maximized by
  - Choosing reactor type
  - Composition and homogenity of the feed
  - Enrichment and adaptation of microbial community (done by increasing OLR step by step)
- The reactor content should change 2-3 times (2-3 times the HRT) before the process performance can be seen
- HRT can be between 10-150 d



### OLR and overload

- OLR changes fast and significantly → the OLR increases, which can result in overload
- Possible effects
  - Production of VFAs
  - Decrease or termination of methane production
- Actions
  - Stopping the feed
  - Adding inoculum
  - Diluting the feed

### **Process technology options**

- Mesophilic vs. thermophilic
- Batch vs. continuous process
- Completely mixed vs. plug flow process
- One stage vs. multi-stage process
- Wet vs. dry process

**FJ** Tampere University

Combination of these



### Parameters affecting anaerobic treatment

#### • pH

- Methanogens 6.6-7.6
- Acidogenic bacteria 5.2-6.3
- High OLR  $\rightarrow$  Decrease in pH  $\rightarrow$  Decrease in methane production
- Disturbances in feeding  $\rightarrow$  Increase in pH  $\rightarrow$  Disturbance in acidogenic bacteria

#### - Temperature

- Mesophilic microorganisms (35-40°C): Not sensitive for temperature fluctuations, hygienisation is not as effective
- Thermophilic microorganisms (55-65°C): More sensitive for fluctuations in pH and temperature as well as for inhibiting compounds, requirement for additional heating, better hygienisation, possibility to use higher OLR, faster treatment of wastewater

### Batch vs. continuous

#### **Batch**

- Reactor is filled and the anaerobic degradation proceeds from hydrolysis to methane production
- Various batch reactors, where degradation proceeds in different steps
- Often dry processes
- So called "carage model"



#### Continuous

- More often used
- Ofter semi-continuous, where feed is added periodically
- Better result, if continuous feeding
- More stable quality of the digestate and methane production

### Dry vs. wet process

#### **Dry process**

- Transfer with screw conveyers, belts, etc.
- Gas removal can be difficult
- Often plug flow
- The inoculum has to be recycled
- Substrate gradients, i.e. the substrate concentrations and anaerobic degradation phases vary
- Small need for heating

#### Wet process

- TS 10-13%, but can be even higher if the biodegradability is high
- The feed is pumped
- Reactor content can be mechanically mixed
- Completely mixed reactor with homogenous content
- Liquid fraction is often separated from the digestate (conteins e.g. ammonium-N)
- If used for dry feed, the feed is diluted with the liquid part of the digestate (risk for inhibition)

### Solids (TS) and organic matter (VS) content

#### • TS <1 %

- Wastewaters
- Sludge bed reactors (upflow anaerobic sludge bed, UASB)
- Chemical oxygen demand (COD) usually used as loading parameter instead of VS

#### • TS <10 %

#### Wet process

- Usually possible to use pumps
- Needs more energy for heating than dry process
- Water separation from effluent, if needed, consumes energy
- Manure ~4-6 % TS, concentrated sludge from wastewater treatment ~ 2-4 %

#### • TS >10 %

- Dry process (e.g. plug flow) or dilution needed
- Material transported in the system using e.g. screw feeders
- Solubilisation less effective, mixing consumes more energy
- Municipal biowaste ~ 30 %, grass ~ 20-40%

pre-treated was be avoid the formation of floating and sinking sludge pre-treated was floating and sinking sludge process water circulation for adjusting of input TS press water

http://enermac.com//







### One vs. multi-stage process

#### One stage

- All the reactions occur in one reactor
- The reactor is optimized according to the slowest phase and methane production
- Does not necessarily lead to maximum methane production
- Often the process is completely stirred

#### **Multi-stage**

- Degradation occurs in many reactors
- Hydrolysis and acidogenesis in one reactor, methane production in another
- The stages can be optimized separately
- Examples
  - Spontaneous hydrolysis and acidogenesis can occur in storage tank
  - Methane can be produced in post storage of digestate
  - First stage can also be H2-process
- More structures required than one stage process → More expensive, if the enhanced methane production does not compensate the costs



### **Plug flow reactor**

Often dry processes



- Horizontal
  - Inoculum can be added to the feed before the reactor
  - Produced methane along the whole reactor volume
  - Mass transfer mechanically
- Vertical
  - Feed from the top of the reactor
  - Degradation products are transferred towards the bottom, when the methane production is enhanced
  - Screw axis is used for mass transfer

### **Completely stirred tank reactor (CSTR)**

- Mainly anaerobic digestion of sludge
- Often wet processes
  - The liquid fraction of the digestate can be recycled, here the accumulation of certain compounds (e.g. NH<sub>4</sub><sup>+</sup>) has to be taken into accoung
- Design parameters
  - 35°C

- Sludge retention time (SRT): 15-30 d
- Ogranic loading rate (OLR): 4 kg COD/m<sup>3</sup>d





#### Tampere University

### **Completely stirred tank reactor (CSTR)**

- Mechanical mixing
  - Picket fence stirrer (blades at different heights)
  - The surface can be mixed separately
  - Continuous or intermittent
  - To be considered: energy consumption, corrosion resistance
- Gas mixing
  - Nozzles at the bottom of the reactor, where the gas is recycled to
- Hydraulic mixing
  - Using pumps to recycle the reactor content
  - The pump can contain a shredder to decrease the particle size

### **Upflow anaerobic sludge blanket (UASB) reactor**

- Operation is based on the good settling characteristics of the sludge
- Biomass retention due to formation of granules
  - Mainly microbial biomass

- Diameter 1-5 mm, compact aggragates
- Sludge granules can be obtained as preprepared granules or they are grown upon start-up
- → Microbes are close to each other → Transfer of metabolites is fast
- Upflow of liquid and gas bubbles fluidize the sludge and cause hydraulic mixing





### UASB

- Especially for
  - Food industry
  - Pulp and paper factories
  - Chemical industry
- Design parameters
  - Hydraulic retention time (HRT): 4-8 h
  - SRT ≥ 15-30 d
  - OLR: 5-20 kg COD/m<sup>3</sup>d







### **Anaerobic filter and hybrid reactors**

- Anaerobic biofilters
  - Upflow or downflor filters
  - Bacteria form a biofilm on carrier materia
  - Excellent retention of biomass
  - HRT: 1-3 d
  - OLR: 5-20 kg COD/m<sup>3</sup>d
- Hybrid reactors
  - Combination of filter and sludge bed reactors
  - HRT: 12-40 h
  - OLR: 1-10 kg COD/m<sup>3</sup>d





### **Anaerobic filter materials**



• Plastic particles or matrixes

www.sequencertech.com

- Part of the biomass can retain as aggregates in the voids of filter material
- Problems: clogging
- Different rinsing processes have been developed to remove the biomass
- Typical specific surface area: 100 m<sup>2</sup>/m<sup>3</sup>
- Void space 90-95% of the overall volume



#### Tampere University

### **Anaerobic fluidised bed reactor (FBR)**

- High upflow velocity fluidizes the carrier materials, which is achieved with recirculation flow
- Biomass forms a biofilm on the carrier material (15-35 g VSS/L)
- Carrier material
  - 0.2-0.55 mm sand particles/activated carbon
  - Typical specific surface area: 5000-10000 m<sup>2</sup>/m<sup>3</sup>
- Good mass transfer
- Design parameters
  - HRT: 0.2-2 g
  - OLR: 20-40 kg COD/m<sup>3</sup>d



### **Design of anaerobic wastewater treatment**

- Design parameters available for anaerobic sludge treatment
- Not specific design parameters for anaerobic wastewater treatment → industrial wastewaters have large variations
- Has to be considered
  - Organic content and concentration of wastewater (loading)
  - Inhibiting compounds
  - Temperature and pH
  - Changes in loading

- Aim
  - Fast growth of active biomass and good retention in the reactor
  - Long SRT
  - Short HRT
  - Short treatment time
- Before design
  - Laboratory experiments (biodegradability, inhibition)
  - Pilot-scale experiments (reactor type, optimization of environmental parameters)

Tampere University

### Digestate

- The end product of the biogas process
- The aim is to utilize the digestate, e.g. in crop production
- Treatment of digestate
  - The quality of the digestate has to be controlled considering the end-use
  - Important factor is the control of emissions (incl. greenhouse gas emissions)
- Digestate processing can produce a liquid fraction that also requires treatment

#### **Digestate quality**

- Nutrients available for plant growth
- No pathogens
- No heavy metals
- Also the concentrations of organic detrimental compounds are regulated
- The digestate (or nutrient product) has to be spread with the existing equipment
- High enough nutrient content

### The effect of biogas process on the digestate

• Hygienisation

- Some detrimental compounds are degraded
- Better nutrient balance
  - The share of ammonium-N increases, usually 50-60% as ammonium-N (depends on feed and process conditions)
  - C:N -ratio decreases
  - Recycling of other nutrients, e.g. P, K. Ca, Mg
- The amount of organic matter in the soil increases
- The use of inorganic fertilizers decreases
- More homogenous material compared to the feed
  - Easier and more controlled spreading
  - Transfers more easily to the soil

**T** Tampere University

## Overview – Concept for methane and fertilisers production from crops and wastes



### **Anaerobic treatment of sedimented fibers**

![](_page_45_Picture_2.jpeg)

- New city district, Hiedanranta, of 115 ha for 25 000 people
- Sulphite/CTMP pulp mill discharged effluents to the nearby bay area from 1910s to 1980s

Ca. 1.5 million m<sup>3</sup> sedimented fibers from a pulp mill, up to 10 m, ca. 20 ha

![](_page_45_Picture_6.jpeg)