COEFFICIENT OF PARTIAL DETERMINATION AND PARTIAL CORRELATION
 Tomi Seppälä
 Aalto School of Business

2018

Linear regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u
$$

$\mathrm{D}=\mathrm{RSS}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ $\operatorname{TSS}(Y)=$
$A+B+C+D$
coefficient of determination: $\mathbf{R}^{\mathbf{2}}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}}$

COEFFICIENT OF partial DETERMINATION

 between Y and X 2 , when given X 1 :Tells how many percentages of the remaining variation in Y can be explained by X_{2} after the effect of X_{1} on Y has been taken into account (effect of X_{1} has been controlled for).

COEFFICIENT OF partial CORRELATION between Y and X_{2}, when given X_{1} :

Tells the correlation between Y and X_{2} after the effect of X_{1} on Y has been taken into account (effect of X_{1} has been controlled for).

Formula to calculate partial correlation

Here all variations (ball sizes) are scaled to 1 (or 100\%): $a+b+c+d=1$

$$
r_{Y X 2 \mid X 1}=\frac{r_{Y X 2}-r_{Y X 1} \cdot r_{X 1 X 2}}{\sqrt{\left(1-r_{Y X 1}^{2}\right)\left(1-r_{X 1 X 2}^{2}\right)}}
$$

Example: consider the following correlation matrix

	Y	X 1	X 2
Y	1	0.6	0.5
X 1	0.6	1	0.7
X 2	0.5	0.7	1

Partial correlation between Y and X_{2}, when given X_{1} :

$$
r_{\mathrm{YX} 2 \mid \mathrm{X} 1}=\frac{0.5-0.6 \cdot 0.7}{\sqrt{\left(1-0.6^{2}\right)\left(1-0.7^{2}\right)}}=0.35
$$

Time Series model, eg. AR(2)
$\mathrm{Y}_{\mathrm{t}}=\phi_{1} \mathrm{Y}_{\mathrm{t}-1}+\phi_{2} \mathrm{Y}_{\mathrm{t}-2}+\mathrm{u}_{\mathrm{t}}$
$\mathrm{D}=\operatorname{RSS}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

COEFFICIENT OF DETERMINATION: $\mathbf{R}^{2}\left(\mathrm{Y}_{\mathrm{t}-1}, \mathrm{Y}_{\mathrm{t}-2)}=\right.$

$$
\frac{\mathbf{A}+\mathrm{B}+\mathrm{C}}{\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}}
$$

COEFFICIENT OF partial DETERMINATION

 of order 2 is the coefficient of determination between Y_{t} and Y_{t-2}, when given Y_{t-1} :$$
\tau_{22}^{2}=\frac{B}{B+D}
$$

Tells how many percentages of the remaining variation in Y_{t} can be explained by Y_{t-2} after the effect of Y_{t-1} on Y_{t} has been taken into account (effect of Y_{t-1} has been controlled for).

COEFFICIENT OF partial AUTOCORRELATION of order 2

is the partial correlation between Y_{t}
 and Y_{t-2}, when given Y_{t-1} :

Tells the autocorrelation between Y_{t} and Y_{t-2} after the effect of Y_{t-1} on Y_{t} has been taken into account (effect of Y_{t-1} has been controlled for).

τ_{22}

Partial autocorrelation of order 2

Same formula as for cross sectional variables!
But simplifies in this case if the process is stationary! This formula works for any stationary process

$$
\tau_{22}=\frac{\tau_{2}-\tau_{1}^{2}}{1-\tau_{1}^{2}}
$$

