COEFFICIENT OF PARTIAL DETERMINATION AND PARTIAL CORRELATION

Tomi Seppälä Aalto School of Business 2018

COEFFICIENT OF partial DETERMINATION between Y and X2, when given X1:

Tells how many percentages of the remaining variation in Y can be explained by X_2 after the effect of X_1 on Y has been taken into account (effect of X_1 has been controlled for).

COEFFICIENT OF partial CORRELATION between Y and X₂, when given X₁:

Tells the correlation between Y and X_2 after the effect of X_1 on Y has been taken into account (effect of X_1 has been controlled for).

Formula to calculate partial correlation

Here all variations (ball sizes) are scaled to 1 (or 100%): a+b+c+d=1

Example: consider the following correlation matrix

	Y	X1	X2
Y	1	0.6	0.5
X1	0.6	1	0.7
X2	0.5	0.7	1

Partial correlation between Y and X₂, when given X₁:

$$r_{\text{YX2|X1}} = \frac{0.5 - 0.6 \cdot 0.7}{\sqrt{(1 - 0.6^2)(1 - 0.7^2)}} = 0.35$$


```
COEFFICIENT OF partial DETERMINATION
of order 2 is the coefficient of
determination between Y_t and Y_{t-2}, when
given Y_{t-1}:
```

$$\tau_{22}^2 = \frac{B}{B+D}$$

Tells how many percentages of the remaining variation in Y_t can be explained by Y_{t-2} after the effect of Y_{t-1} on Y_t has been taken into account (effect of Y_{t-1} has been controlled for).

COEFFICIENT OF partial AUTOCORRELATION of order 2 is the partial correlation between Y_t and Y_{t-2} , when given Y_{t-1} :

Tells the autocorrelation between Y_t and Y_{t-2} after the effect of Y_{t-1} on Y_t has been taken into account (effect of Y_{t-1} has been controlled for).

Partial autocorrelation of order 2

Same formula as for cross sectional variables! But simplifies in this case if the process is stationary! This formula works for any stationary process

$$\tau_{22} = \frac{\tau_2 - \tau_1^2}{1 - \tau_1^2}$$

