2. (a) Here we explore some basic concept of the reciprocal basis vectors. Take three complex vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ where

$$
\begin{array}{r}
\mathbf{a}=\mathbf{u}_{x}+\mathbf{u}_{y} \\
\mathbf{b}=\mathbf{u}_{y}+2 \mathbf{j} \mathbf{u}_{z} \\
\mathbf{c}=\mathrm{j} \mathbf{u}_{x}-3 \mathbf{u}_{z} \tag{3}
\end{array}
$$

i. Compute the reciprocal vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$
ii. Compute the dyadic $\mathbf{a a}^{\prime}+\mathbf{b b}^{\prime}+\mathbf{c c}^{\prime}$
iii. Expand the vector $\mathbf{u}_{x}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
(b) Dyadics: Show, by expanding in the cartesian components that

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \times \overline{\bar{l}}=\mathbf{b a}-\mathbf{a b} \tag{4}
\end{equation*}
$$

You can use as test examples the vectors $\mathbf{a}=a_{x} \mathbf{u}_{x}$ and $\mathbf{b}=b_{x} \mathbf{u}_{x}+b_{y} \mathbf{u}_{y}+b_{z} \mathbf{u}_{z}$. Similarly, is the expression

$$
\begin{equation*}
(\mathbf{b} \times \overline{\bar{I}}) \times \mathbf{a}=\mathbf{a b}-(\mathbf{a} \cdot \mathbf{b}) \overline{\bar{I}} \tag{5}
\end{equation*}
$$

valid or not?
(c) Dyadic: Assuming the unit dyadic $\overline{\bar{I}}$ and

$$
\begin{equation*}
\overline{\overline{\mathrm{B}}}=\overline{\overline{\mathrm{I}}}+2\left(\mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{x}\right) \tag{6}
\end{equation*}
$$

answer/compute the following:
i. Is $\overline{\bar{B}}$ symmetric?
ii. $\operatorname{tr} \overline{\bar{B}} \quad(=\overline{\bar{B}}: \overline{\bar{I}})$,
iii. $\operatorname{spm} \overline{\bar{B}} \quad\left(=\frac{1}{2} \overline{\bar{B}} \times \overline{\bar{B}}: \overline{\bar{I}}\right)$,
iv. $\operatorname{det} \overline{\overline{\mathrm{B}}} \quad\left(=\frac{1}{6} \overline{\overline{\mathrm{~B}}} \times \overline{\overline{\mathrm{B}}}: \overline{\overline{\mathrm{B}}}\right)$, and
v. its inverse $\quad\left(=\overline{\bar{B}}^{-1}\right)$.
vi. Check and show that $\overline{\bar{B}} \cdot \overline{\bar{B}}^{-1}=\overline{\overline{\mathrm{I}}}$ and $\overline{\overline{\mathrm{B}}}{ }^{-1} \cdot \overline{\overline{\mathrm{~B}}}=\overline{\overline{\mathrm{I}}}$.

Sample solutions

2. (a) Using results in Section 1.6 of the book, we find (note that $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}=-5$)

$$
\mathbf{a}^{\prime}=\frac{1}{5}\left(3 \mathbf{u}_{x}+2 \mathbf{u}_{y}+\mathrm{j} \mathbf{u}_{z}\right), \quad \mathbf{b}^{\prime}=\frac{1}{5}\left(-3 \mathbf{u}_{x}+3 \mathbf{u}_{y}-\mathrm{j} \mathbf{u}_{z}\right), \quad \mathbf{c}^{\prime}=\frac{1}{5}\left(-2 \mathrm{j} \mathbf{u}_{x}+2 \mathrm{j} \mathbf{u}_{y}-\mathbf{u}_{z}\right)
$$

Noting that

$$
\begin{gathered}
\mathbf{a a}^{\prime}=\frac{1}{5}\left(3 \mathbf{u}_{x} \mathbf{u}_{x}+2 \mathbf{u}_{x} \mathbf{u}_{y}+\mathrm{j} \mathbf{u}_{x} \mathbf{u}_{z}+3 \mathbf{u}_{y} \mathbf{u}_{x}+2 \mathbf{u}_{y} \mathbf{u}_{y}+\mathrm{j} \mathbf{u}_{y} \mathbf{u}_{z}\right) \\
\mathbf{b b}^{\prime}=\frac{1}{5}\left(-3 \mathbf{u}_{y} \mathbf{u}_{x}+3 \mathbf{u}_{y} \mathbf{u}_{y}-\mathrm{j} \mathbf{u}_{y} \mathbf{u}_{z}-6 \mathrm{j} \mathbf{u}_{z} \mathbf{u}_{x}+6 \mathrm{j} \mathbf{u}_{z} \mathbf{u}_{y}+2 \mathbf{u}_{z} \mathbf{u}_{z}\right) \\
\mathbf{c c}^{\prime}=\frac{1}{5}\left(2 \mathbf{u}_{x} \mathbf{u}_{x}-2 \mathbf{u}_{x} \mathbf{u}_{y}-\mathrm{j} \mathbf{u}_{x} \mathbf{u}_{z}+6 \mathrm{j} \mathbf{u}_{z} \mathbf{u}_{x}-6 \mathrm{j} \mathbf{u}_{z} \mathbf{u}_{y}+3 \mathbf{u}_{z} \mathbf{u}_{z}\right)
\end{gathered}
$$

their sum becomes the unit dyadic.
The expansion comes easily using the previous result:

$$
\mathbf{u}_{x}=\overline{\bar{l}} \cdot \mathbf{u}_{x}=\left(\mathbf{a a}^{\prime}+\mathbf{b} \mathbf{b}^{\prime}+\mathbf{c c}^{\prime}\right) \cdot \mathbf{u}_{x}=\frac{3}{5} \mathbf{a}-\frac{3}{5} \mathbf{b}-\mathrm{j} \frac{2}{5} \mathbf{c}
$$

(b)

$$
\begin{gathered}
\mathbf{a} \times \mathbf{b}=a_{x} b_{y} \mathbf{u}_{z}-a_{x} b_{z} \mathbf{u}_{y} \\
(\mathbf{a} \times \mathbf{b}) \times \overline{\bar{I}}=a_{x} b_{y} \mathbf{u}_{y} \mathbf{u}_{x}-a_{x} b_{y} \mathbf{u}_{x} \mathbf{u}_{y}-a_{x} b_{z} \mathbf{u}_{x} \mathbf{u}_{z}+a_{x} b_{z} \mathbf{u}_{z} \mathbf{u}_{x}
\end{gathered}
$$

On the other hand,

$$
\mathbf{b a}=a_{x} b_{x} \mathbf{u}_{x} \mathbf{u}_{x}+a_{x} b_{y} \mathbf{u}_{y} \mathbf{u}_{x}+a_{x} b_{z} \mathbf{u}_{z} \mathbf{u}_{x} \quad \text { and } \quad \mathbf{a b}=a_{x} b_{x} \mathbf{u}_{x} \mathbf{u}_{x}+a_{x} b_{y} \mathbf{u}_{x} \mathbf{u}_{y}+a_{x} b_{z} \mathbf{u}_{x} \mathbf{u}_{z}
$$

whence their difference equals $(\mathbf{a} \times \mathbf{b}) \times \overline{\bar{l}}$.
Likewise the component expansion proves that

$$
(\mathbf{b} \times \overline{\bar{I}}) \times \mathbf{a}=\mathbf{a b}-(\mathbf{a} \cdot \mathbf{b}) \overline{\bar{I}}
$$

which can be seen also from

$$
(\mathbf{b} \times \overline{\bar{I}}) \times \mathbf{a}=\mathbf{b} \times \overline{\bar{I}} \cdot \mathbf{a} \times \overline{\bar{I}}=\mathbf{b} \times(\mathbf{a} \times \overline{\bar{I}})=\mathbf{a b}-(\mathbf{a} \cdot \mathbf{b}) \overline{\bar{I}}
$$

where in the last one we used the "bac-cab" rule.
(c) i. Yes.
ii. $\operatorname{tr} \overline{\bar{B}}=3$
iii. $(1 / 2) \overline{\overline{\mathrm{B}}} \times \overline{\overline{\mathrm{B}}}=\mathbf{u}_{x} \mathbf{u}_{x}+\mathbf{u}_{y} \mathbf{u}_{y}-3 \mathbf{u}_{z} \mathbf{u}_{z}-2\left(\mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{x}\right)$ which means that spm $\overline{\overline{\mathrm{B}}}=-1$.
iv. $\operatorname{det} \overline{\bar{B}}=-3$
v. $\overline{\overline{\mathrm{B}}}^{-1}=(1 / 2)\left(\overline{\overline{\mathrm{B}}}_{\times} \overline{\overline{\mathrm{B}}}\right)^{T} / \operatorname{det} \overline{\overline{\mathrm{B}}}=(1 / 3)\left(-\mathbf{u}_{x} \mathbf{u}_{x}-\mathbf{u}_{y} \mathbf{u}_{y}+3 \mathbf{u}_{z} \mathbf{u}_{z}+2\left(\mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{x}\right)\right)$
vi. Straightforward computation.

