$$
\begin{aligned}
& \left(\left(\dot{A}^{\top}\right)^{-1} \cdot \bar{A}^{\top}\right)^{\top}=\dot{\bar{I}}^{\top} \\
& \underbrace{\bar{A}^{\top \top}}_{\underline{\prime}} \cdot\left(\left(\bar{A}^{\top}\right)^{-1}\right)^{\top} \underbrace{\top} \dot{I}^{\dot{I}} \quad \bar{A}^{-1} .
\end{aligned}
$$

$$
\begin{aligned}
& (,)=\left(\bar{A}^{-1}\right)^{\top} \\
& f\left(\bar{A}^{\top}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{\mu}}^{-1} \cdot(\bar{B}=\overline{\bar{\mu}} \cdot \bar{H}+\bar{j} \cdot \bar{E}) \\
& \bar{H}=\bar{\mu}^{-1} \cdot \bar{B}-\bar{\mu}^{-1} \cdot \bar{J} \cdot \bar{E} \\
& \bar{D}=\dot{\varepsilon} \cdot \bar{E}+\overline{\bar{\xi}} \cdot\left(\bar{\mu}^{-1} \cdot \bar{B}-\bar{\mu}^{-1} \cdot \bar{J} \cdot \bar{E}\right) \\
& =\left(\dot{\bar{\varepsilon}}-\dot{\xi}^{-{ }^{-1}} \cdot \overline{\bar{\zeta}}\right) \cdot E+\overline{\dot{\xi}} \cdot \bar{\mu}^{-1} \cdot \bar{B} \\
& \overline{\bar{A}} \quad \bar{B}=c \dot{A} . \\
& \overline{\bar{A}} \cdot \overline{\bar{B}}=\overline{\bar{A}} \cdot C \bar{A} \\
& \overline{\bar{A}}=\bar{u}_{x} \bar{u}_{x} \quad \overline{\bar{B}}=\bar{u}_{y} \bar{u}_{y} \\
& \overline{\bar{A}}=\bar{u}_{x} \bar{u}_{x}+2 \bar{u}_{y} \bar{u}_{y} \quad \overline{\bar{B}}=\bar{u}_{x} \bar{u}_{y}+\bar{u}_{y} \bar{u}_{x} \\
& \overline{\bar{A}} \cdot \overline{\bar{B}}=\bar{u}_{x} \bar{u}_{y}+2 \bar{u}_{y} \bar{u}_{x} \\
& \bar{B} \cdot \bar{A}=2 \bar{u}_{x} \bar{u}_{y}+\bar{u}_{y} \bar{u}_{x} \\
& \bar{A} \cdot \bar{x}=\lambda \bar{x} \\
& \downarrow \lambda_{1} \bar{u} \bar{u}+\lambda_{2} \bar{v} \bar{N}+\lambda_{3} \bar{w} \tilde{w} \\
& \geq \quad \cdots \quad \operatorname{nan}^{\prime}+D_{2} \bar{w} \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{B}}=\beta_{1} \bar{u} \bar{u}+\beta_{2} \bar{v} \dot{N}+\beta_{3} \bar{w} \dot{w} \\
& \overline{\bar{A}} \cdot \overline{\bar{B}}=\lambda_{1} \beta_{1} \bar{u} \bar{u}+\lambda_{2} \beta_{2} \overline{\tilde{v}} \dot{\tilde{v}}+\lambda_{2} \rho_{3} \bar{w} w=\bar{B} \cdot \bar{A}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(\overline{\bar{A}} \cdot \overline{\bar{B}})=\operatorname{det} \bar{A} \cdot \operatorname{det} \bar{B} \\
& (\overline{\bar{A}} \times \bar{B}) \cdot(\overline{\bar{C}} \times \overline{\bar{D}})=(\overline{\bar{A}} \cdot \overline{\bar{C}})_{y}^{\times}(\overline{\bar{B}} \cdot \overline{\bar{D}})+(\overline{\dot{A}} \cdot \overline{\bar{D}})_{\times}^{\times(\overline{\bar{B}} \cdot \overline{\bar{C}})} \\
& \bar{a}_{1} \bar{a}_{2} \times \bar{b}_{1} \bar{b}_{2} \cdot \bar{c}_{1} \bar{c}_{2} \times \bar{d}_{1} \bar{d}_{2} \quad\left(\bar{a}_{1} \bar{a}_{2} \cdot \bar{d}_{1} \bar{d}_{2}\right) \times{ }_{\times}^{x}\left(\bar{b}_{1} \bar{b}_{2}, \bar{c}_{1} \bar{c}_{2}\right) \\
& \left(\bar{a}_{1} \times \bar{b}_{1}\right)(\underbrace{\left.\bar{a}_{2} \times \bar{b}_{2}\right) \cdot\left(\bar{c}_{1} \times \bar{d}_{1}\right)\left(\bar{c}_{2} \times \bar{d}_{2}\right)} \\
& \left(\bar{a}_{2} \cdot \bar{d}_{1}\right)\left(\bar{b}_{2} \cdot \bar{c}_{1}\right)\left(\bar{a}_{1} \times \bar{b}_{1}\right)\left(\bar{d}_{2} \times \bar{c}_{2}\right) \\
& (\overline{\bar{A}} \times \overline{\bar{A}}) \cdot(\overline{\bar{B}} \times \overline{\bar{B}})=2(\overline{\bar{A}} \cdot \overline{\bar{B}}) \times(\overline{\bar{A}} \cdot \overline{\bar{B}}) \\
& \overline{\bar{D}}^{(2)}=\frac{1}{2} \overline{\bar{D}} \times \overline{\bar{D}} \\
& \Downarrow \\
& \overline{\bar{A}}^{(2)} \cdot \overline{\bar{B}}^{(2)}=(\overline{\bar{A}} \cdot \overline{\bar{B}})^{(2)} \\
& \bar{D}^{-1}=\frac{\overline{\bar{D}}^{(2) T}}{d+\overline{\bar{D}}} \\
& (\overline{\bar{A}} \cdot \overline{\bar{B}})^{-1}=\frac{(\overline{\bar{A}} \cdot \overline{\bar{B}})^{(2) T}}{\operatorname{det}(\overline{\bar{A}} \cdot \overline{\bar{B}})}=\frac{\left(\overline{\bar{A}}^{(2)} \cdot \overline{\bar{B}}^{(2)}\right)^{\top}}{\operatorname{det}(\overline{\bar{A}} \cdot \overline{\bar{B}})}=\frac{\overline{\bar{B}}^{(2) T} \cdot \dot{\bar{A}}^{(2) T}}{\operatorname{det}(\overline{\bar{A}} \cdot \overline{\bar{B}})} \\
& =\overline{\bar{B}}^{-1} \cdot \overline{\bar{A}}^{-1}=\frac{\overline{\bar{B}}^{(2) T}}{\operatorname{det} \overline{\bar{B}}} \cdot \frac{\overline{\bar{A}}^{(2) T}}{\operatorname{det} \bar{A}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{A}}=\alpha \overline{\bar{I}}+\bar{a} \times \overline{\bar{I}} \\
& \text { 言关 }=2 \bar{I} \\
& \overline{\bar{I}} \times \bar{a} \times \overline{\bar{I}}=\bar{a} \times \overline{\bar{I}} \\
& \operatorname{tr}(\overline{\vec{A}} \cdot \overline{\bar{B}})=\bar{A}: \bar{B}^{\top} \\
& \bar{a} \times \bar{I} \times \bar{x} \times \overline{\bar{I}}=2 \overline{a n} \\
& \text { 言: 立 }=3 \\
& \bar{a} \bar{a}-\bar{a} \cdot \bar{a}=\overline{\bar{I}} \\
& \bar{a} \times \overline{\mathcal{I}}: \overline{\mathcal{I}}=0 \\
& \bar{a} \times \bar{I}: \bar{a} \times \bar{I}=-\operatorname{tr}(\bar{a} \times \overline{\bar{I}} \cdot \bar{a} \times \bar{I})=2 \bar{a} \cdot \bar{a} \\
& \overline{\bar{A}} \times \overline{\bar{B}}=
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{A}} \times \dot{I}=\operatorname{tr} \overline{\bar{A}} \overline{\bar{I}}-\overline{\bar{A}}^{\top} \\
& (\bar{a} \times \overline{\bar{I}}) \times \overline{\bar{I}}=\bar{a} \times \overline{\bar{I}} \\
& \overline{\bar{A}} \times \overline{\bar{A}}=\left(\operatorname{tr}^{2} \overline{\bar{A}}-\operatorname{tr}^{2} \bar{A}^{2}\right) \overline{\bar{I}}-2 \operatorname{tr} \overline{\bar{A}} \overline{\bar{A}}^{\top}+2 \overline{\bar{A}}^{2 T} \\
& \bar{a} \times \overline{\bar{I}} \times \bar{a} \times \overline{\bar{I}}=2 \bar{a} \cdot \bar{a} \overline{\bar{I}}+2(\bar{a} \bar{a}-\bar{a} \cdot \bar{a} \cdot \overline{\bar{I}}) \\
& =2 \bar{a} \bar{a}
\end{aligned}
$$

