A?

Aalto University
School of Electrical
Engineering

Service evolution

21.3.2019
Santeri Paavolainen

So far...

- We’ve discussed primarily

- Systems with static interfaces or where interface changes are not an
issue

- Co-developed systems / internal customers that can be updated at
the same time

- What if not a valid assumption? Where not? How to handle?

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 18.3.2019
Engineering o 3

Why service evolution?

- Services change over time - Obsolescence
- Internal implementation - Maintaining “old” systems
1€ & y

should not be visible becomes a cost

- ... but abstractions are leaky - Hard—tO-ﬁf}d hardlgéjl%e C?mponents,

. insecure software, difficult

- Sometimes for performance, upgrades, skill retention,
security or other reasons “undesirable” maintenance jobs >
internal changes must be increased maintenance costs (and

risks)

- Most severe service interface
change: removal

reflected externally

- Needs and requirements
change over time

- Many changes are actually

desirable => Externally visible changes

unavoidable

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019

Engineering 4

When a problem?

- Coupling

- Hidden assumptions

- Undocumented behavior
- Customers

- Marketplace

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 18.3.2019
Engineering

5

Coupling

Interface definition “id of 6 alphanumeric characters”
- Customers: “create table .. (remote id varchar(6) not null)

Update to “id of 12 alphanumeric characters”

»

Interface definitions create coupling between interface and
implementation

- This is actually what interfaces are for! You want to create coupling
only based on an interface

Problematic when interface changes
Explicit change

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 6

Hidden assumptions

Interface: “id of alphanumeric characters”

Customer sees only ids of six characters
- “create table .. (remote id varchar (6) not null)

Update to “id of 12 alphanumeric characters”
- Note that specification did not set an explicit bound
- Technically the new spec is a subset of the old id space

»

Assumption is hidden from the interface provider

- Still causes problems with customers

- Originally problem was ambiguity in the interface definition
Explicit change, but probably assumed not to cause problems

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 7

Hidden assumptions

- Interface: “replies with POST to CB URL of DATA(seq) and
END(seq) messages, messages are ordered by their
sequence number”

- Implementation synchronous and always does first DATA(n) and
only after first POST completes, then END(n+1)

- Changed to asynchronous implementation

- Now can do:
DATA(n)=2END(n+1),

END(n+1)>DATA(n) or even parallel
DATA()|END(n+1)

- Would this cause problems? In what situations?

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 8

Undocumented behavior

(I just saw a cool YouTube video going deep into this, that’s why)
Commodore 64’s PLA chip had a timing issue (C64 1982)

- This was exploited by FastLoad (and others)

- Became known widely and used by many games etc.

Results
1. Commodore changed from externally sourced PLA chip to in-house
design - had to religiously re-create glitches from original
2. People creating modern PLA replacements (chips from step 1. fail)
have to re-create glitching behavior (not trivial)

(What'’s the difference between hidden assumption and
undocumented behavior?)

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 9

https://www.youtube.com/watch?v=ofg33zk9uCA

Customers (+ users)

- Both internal (f.ex. mobile app team) and external (3" parties)

- Interface changes can be made atomic; integrations to them
change asynchronously
- Development lead times (design, coding, testing, etc.)
- Inertia to changes (organizational, security, financial, ...)
- Contractual commitments (supporting specific version)

- Deployments may take time and depend on end-users (consider
firmware upgrades to TVs, for example)

- Result: delays in adoption, potentially with very long tail

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 10

100%

Adoption
of new API

0%

Long tail of
slow adopters

Business need
Automated updates

- Magnitude of change
- Manual updates

-+

\/

\

New API
released

Time

Marketplace (aka business context)

- Who holds the power? Customer or the vendor?
- If customer, things usually go on their pace

- |Is there competition on the market?

- Major changes in APIs may lead to customer re-evaluating their
changes (e.g. a large expenditure anyway for an upgrade)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 12

Fixes?

Aalto University
School of Electrical
|

Engineering

Handling service evolution

- Case-by-case basis
- Changes in customers, marketplace etc.
- OTOH, usually same practices mostly apply

- Things to do prior to changes
- SLAs, contracts, communication
- Technical solutions

Backward-compatible changes
Adaptable protocols

Versioning, interface migration, service contracts

School of Electrical
Engineering

A Aalto University COM-EV Microservice architectures and serverless computing 2019

19.3.2019
14

SLAs, contracts and communication

Think about interface (API) as a contract

- Unilateral decisions usually bad (you think you know your customers?)
Bake into SLAs how interface changes are handled:

- “patch, minor and major releases” — different support targets

- What is the maximum time “old” versions are supported (if at all)

- Is there advance warning given to customers of changes? (Do you
commit to those?)

Communicate with your customers

- Discussion forums, beta testers, prior information on substantial (non-
backward compatible) changes, etc.

Goal is to minimize surprises to customers and frustration

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 15

Versioning

- Explicitly specifying what - Host:
interface version used - vl.api.service.com, api-
. . . v2.service.com
- Typical versioning schemes - URL:
- Simple monotonic integer: vi, _ /vl/resource, even
V2, V3 ... /latest/resource for adventurous
- Dotted (A.B or A.B.C): v1.10, - Query string:
v.1.10.12 (always consider as - /resource?version=2
integers! vi.1 = v1.01, havingv.1 - Accept header:
being implicitly two-digit v.10 - Accept: application/mytype+vl

Custom header:
- X-Interface-Version: 1.0

Request body (JSON, XML):

is a disaster)
- Part of request (maybe also

reply) .

ply - {“wersion”: “1.0”, ..}
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering o

16

Host, path,
contents, ...

Service

v1-api.svc.com i

vl & V2 P Ser_\nce

/ version 1

. Service

v2-api.svc.com .

version 2
w1, | Service
/ version 1

Reverse
Proxy

N2/ Service
version 2

(content?)

Problems with versioning

- Implies full support across versions
- Deployment and development complications

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 18

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

19

Version

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 20

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

21

Problems with versioning

- Implies full support across versions
- Customer may use v1 and v2 simultaneously!
- Unless explicitly somehow managed (see later)
- Deployment and development complications
- Version support built into the application?
- Parallel deployment of multiple versions?
- Stateless services easiest to version

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 29

Stateful service versioning

- Support all versions by a - Use multiple backends
single service (code) - All backend versions use the same
S . , data storage
- No “almost but not entirely - Must be updated together for any
parallel deployments schema changes
- Also potentially a nightmare - Canisolate “compatibility” layer to

old backend versions

to maintain - Sometimes stateless translator is

- reqg.version match { sufficient
case VIAPI => .. - Format old request - new request
case V2API => .. and proxy
case V3API|V4API => .. -

Format new response = old
} response

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering o 23

Migration

- lIdea: Run new and version in parallel but each customer in
only one

- Migrate customers to the new version
- Customers get to choose when to migrate

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering o

25

Version 1 customers

Version 2 customers

Customer

——”| Information

Set API to version 2

Query:
What version?

Reverse
Proxy

D

Migrate
customer
data

Migration

- ldea: Run new and version in parallel but each customer in only one
- Migrate customers to the new version
- Customers get to choose when to migrate

- Pros
- Removes need of explicit versioning from interface
- Version to be used becomes part of the customer configuration
- Migration on customer’s own pace

- Cons
- Requires explicit customer information (+ no SLA on anonymous APIs)
- Schema changes and data migration (Rollback? Lots of data to transfer?)
- Gateway has to know which version to use (dynamic)

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering o 27

Adaptable protocols

- ldea: Let the protocol itself be resilient and adaptable
- Implicitly by presence or absence of fields in data or messages
- Explicitly through capability negotiation

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

28

Implicit adaptability in data

- Assume two request formats (old and _ Potentially could have schema
new .
ew) . (OpenAPI?) that informs the
- fullname or first_name + last_name - '
fields client whether a field must be
- if (reg.json.first name && recognized or whether is
reg.json.last name) i
full name = N optlonal. .
req.json.first_name + “ ™ + - You will find these mechanisms
reqg.json.last name .
else if (reg.json.full name) 1n some pI'OtOCOIS
full name = reqg.json.full name

else - Usually overkill (on problems
222 you're likely to encounter)

- Client-side adaptability really only . i
relevant if multiple endpoints - Can become quickly very hairy

- HTTP, ... - Test coverage!
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 19.3.2019
Engineering 29

Capability negotiation

- SMTP, IMAP, ISAKMP etc. examples
- Session-oriented protocols

- * OK The Microsoft Exchange IMAP4 service is ready.
1 capability
* CAPABILITY IMAP4 IMAP4revi AUTH=PLAIN AUTH=NTLM
AUTH=GSSAPI SASL-IR UIDPLUS MOVE ID UNSELECT CHILDREN IDLE
NAMESPACE LITERAL+
1 OK CAPABILITY completed.
2 authenticate PLAIN

> OK AUTHENTICATE completed.
- Client-server (IMAP, SMTP) or peer-to-peer (ISAKMP)

- Probably overkill for most interfaces
- Although potentially useful when you control the client library

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 30

Holy grail of service evolution

No explicit versioning
- “It just works!”
Backward-compatible changes during transition
- “It just keeps on working!”
Customer versions are known accurately
- Interface contracts (per-customer versioning)
- Alternatively you have a binding obsolescence policy

- Able to know accurately when backward-compatibility can be safely
removed

Of course, this is not trivial and may be impossible to achieve

School of Electrical 21.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 32

Examples

Aalto University
School of Electrical
|

Engineering

AWS resource id expansion

First mentions in late 2015

- Announced to be starting in 2016
Enabled in Jan 2016

- Original resource IDs 8
characters long

- Plus type prefix, e.g. “i-<8 - Opt-in e.g. customer’s choice
chars>”, “sg-<8 chars>" - Deadline in Dec 2016
_ 8 _ e - (roughly ... a bit more nuanced)
16 b?l2 blts) - About 11 months to adopt
~ 4 bullion (10 - Could opt-in earlier
- Currently resource ids 17 - A}fter de?adlifne, ngﬁlld not receive
shorter 1ds from S
characters - Existing old ids continue to be valid
1617 =~ 102° - Provided APIs for querying id

length and opting in!

School of Electrical 21.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

34

https://aws.amazon.com/blogs/aws/heads-up-longer-ec2-ebs-resource-ids-coming-in-2016/
https://aws.amazon.com/blogs/aws/theyre-here-longer-ec2-resource-ids-now-available/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resource-ids.html

Twitter API cleanup

- Removal of some API - Rationale?
features in 2018

- “two legacy developer tools
used by about 1% of third-
party developers” (link)

- Mixed reactions

- Pretty vague about that ”1%”
— a single developer could
easily account >50% of traffic

- Business needs? Replacement
API has $$$ tiers

- 3 month grace period

There’s a world in which Twitter embraced third-party
developers fully, letting their energy and ideas infuse its
struggling platform with new life. Most of Twitter's best
ideas have come not from the company, but from its

users. But that would introduce new costs and
complexity into a company that is struggling to meet

basic business objectives.

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 21.3.2019
Engineering o

35

https://blog.twitter.com/official/en_us/topics/product/2018/investing-in-the-best-twitter-experience-for-you.html
https://www.theverge.com/2018/8/16/17699626/twitter-third-party-apps-streaming-api-deprecation

IPv6 adoption

- Original "interface” goof - IPv6 as a replacement
- IPv4 (1981) - 2128 gddress space (~ 1039%)
- Only 232 unique addresses - Draft standard in 1998
- Has lead to widespread NAT - 21 years later adoption at 25%
use — bane of other protocols

25.00%|

- Top-level RIRs exhausted
pools of free address blocks in

20 11 10.00%
0%
'Oovjan
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 21.3.2019

Engineering 36

https://www.google.com/intl/en/ipv6/statistics.html

Future-proofing
Interfaces

Be conservative in what you send,
be liberal in what you accept

b
(Postel’s law)
Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 20.3.2019
Engineering o 38

Future-proofing interfaces

- Adaptability vs. evolution
- Adapting the existing interface to work with new needs
- Evolving a new version of the interface for new needs
- Interface adaptability should not be a default!
- Only when changes are expected to occur, but details unknown

- Extensibility in interfaces comes at cost: implementation, data
transfer, complexity, ...

- Versioning is often way cheaper to do
- When would be applicable?

School of Electrical 19.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering 39

Extensibility in data formats

- Extensibility in the transit
data representation

- Unconstrained key-value
maps easy to extend

- Most marshallers map
“objects” to maps

- Avoid single-value lists, prefer
maps

[1,2,3,4] VS.
[{“"value”:1}, {“value”:2}

y o]

Added fields should work
with old marshallers

- {“value”:1,”"modified”:".."}

- type responsel struct {

Value int " json: »value"

}

type responseZ struct {
Value int " json: »value
Modified string

"json: »modified"”

}

m"we

Aalto University
School of Electrical
Engineering

COM-EV Microservice architectures and serverless computing 2019
20.3.2019

40

Extensibility in data reception

- POST should try to work even if missing fields
- “Sane defaults”
- PUTs should gracefully handle missing fields

- Difference between PUT /user
{"fullname”: null},
{“fullname”: “”},and
{}

- Same logic applies to other protocols (gRPC, Thrift)
- Though requires planning

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 20.3.2019
Engineering o 41

Planning for
evolution

What can you do in advance?

- Define your commitmentto - Future-proof ing interfaces
past versions in SLA _ POST / PUT logic
- Different commitment for

paying customers and free - JSON: use maps

users - gRPC: see here
- Decide on approach - Consider even if explicit
- Versioning may be difficult to versioning is used!
add later

- Host vs. request vs. path vs.
parameter? Implicit?
Adaptability?

- Monitoring and metrics?

Aalto University COM-EV Microservice architectures and serverless computing 2019
School of Electrical 20.3.2019

Engineering 43

https://blog.envoyproxy.io/dynamic-extensibility-and-protocol-buffers-dcd0bf0b8801

What can you do in advance?

- Understand your environment
- Internal and external customers, stakeholders, their needs
- Business goals

- Try to predict which dimensions will be critical
- Auditability, performance, security, data, scalability, ...

- These should guide understanding what initial choices to
make

- They may be wrong, of course

School of Electrical 20.3.2019

A Aalto University COM-EV Microservice architectures and serverless computing 2019
Engineering

44

