
Service evolution
21.3.2019
Santeri Paavolainen



So far …

- We’ve discussed primarily
- Systems with static interfaces or where interface changes are not an 

issue
- Co-developed systems / internal customers that can be updated at 

the same time
- What if not a valid assumption? Where not? How to handle?

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

3



Why service evolution?
- Services change over time

- Internal implementation 
should not be visible

- … but abstractions are leaky
- Sometimes for performance, 

security or other reasons 
internal changes must be 
reflected externally

- Needs and requirements 
change over time

- Many changes are actually 
desirable

- Obsolescence
- Maintaining “old” systems 

becomes a cost
- Hard-to-find hardware components, 

insecure software, difficult 
upgrades, skill retention, 
“undesirable” maintenance jobs à
increased maintenance costs (and 
risks)

- Most severe service interface 
change: removal

è Externally visible changes 
unavoidable

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

4



When a problem?

- Coupling
- Hidden assumptions 
- Undocumented behavior
- Customers
- Marketplace

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

5



Coupling

- Interface definition “id of 6 alphanumeric characters” 
- Customers: “create table … (remote_id varchar(6) not null)”

- Update to “id of 12 alphanumeric characters”

- Interface definitions create coupling between interface and
implementation

- This is actually what interfaces are for! You want to create coupling 
only based on an interface

- Problematic when interface changes
- Explicit change

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

6



Hidden assumptions
- Interface: “id of alphanumeric characters”
- Customer sees only ids of six characters

- “create table … (remote_id varchar(6) not null)”
- Update to “id of 12 alphanumeric characters”

- Note that specification did not set an explicit bound
- Technically the new spec is a subset of the old id space

- Assumption is hidden from the interface provider
- Still causes problems with customers
- Originally problem was ambiguity in the interface definition

- Explicit change, but probably assumed not to cause problems

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

7



Hidden assumptions

- Interface: “replies with POST to CB URL of DATA(seq) and 
END(seq) messages, messages are ordered by their 
sequence number”

- Implementation synchronous and always does first DATA(n) and 
only after first POST completes, then END(n+1)

- Changed to asynchronous implementation
- Now can do: 

DATA(n)àEND(n+1), 
END(n+1)àDATA(n) or even parallel 
DATA(n)|END(n+1)

- Would this cause problems? In what situations?

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

8



Undocumented behavior

- (I just saw a cool YouTube video going deep into this, that’s why)
- Commodore 64’s PLA chip had a timing issue (C64 1982)

- This was exploited by FastLoad (and others)
- Became known widely and used by many games etc.

- Results
1. Commodore changed from externally sourced PLA chip to in-house 

design à had to religiously re-create glitches from original
2. People creating modern PLA replacements (chips from step 1. fail) 

have to re-create glitching behavior (not trivial)
- (What’s the difference between hidden assumption and 

undocumented behavior?)

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

9

https://www.youtube.com/watch?v=ofg33zk9uCA


Customers (+ users)

- Both internal (f.ex. mobile app team) and external (3rd parties)
- Interface changes can be made atomic; integrations to them 

change asynchronously
- Development lead times (design, coding, testing, etc.)
- Inertia to changes (organizational, security, financial, …)
- Contractual commitments (supporting specific version)
- Deployments may take time and depend on end-users (consider 

firmware upgrades to TVs, for example)
- Result: delays in adoption, potentially with very long tail

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

10



Time

Ad
op

tio
n

of
 n

ew
 A

PI

0%

100%

New API
released

Long tail of 
slow adopters

+ Business need 
+ Automated updates
- Magnitude of change
- Manual updates



Marketplace (aka business context)

- Who holds the power? Customer or the vendor?
- If customer, things usually go on their pace

- Is there competition on the market?
- Major changes in APIs may lead to customer re-evaluating their 

changes (e.g. a large expenditure anyway for an upgrade)

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

12



Fixes?



Handling service evolution

- Case-by-case basis
- Changes in customers, marketplace etc.
- OTOH, usually same practices mostly apply

- Things to do prior to changes
- SLAs, contracts, communication

- Technical solutions
- Versioning, interface migration, service contracts
- Backward-compatible changes
- Adaptable protocols

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

14



SLAs, contracts and communication

- Think about interface (API) as a contract
- Unilateral decisions usually bad (you think you know your customers?)

- Bake into SLAs how interface changes are handled: 
- “patch, minor and major releases” – different support targets
- What is the maximum time “old” versions are supported (if at all)
- Is there advance warning given to customers of changes? (Do you 

commit to those?)
- Communicate with your customers

- Discussion forums, beta testers, prior information on substantial (non-
backward compatible) changes, etc.

- Goal is to minimize surprises to customers and frustration

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

15



Versioning
- Explicitly specifying what 

interface version used
- Typical versioning schemes

- Simple monotonic integer: v1,
v2, v3 …

- Dotted (A.B or A.B.C): v1.10, 
v.1.10.12 (always consider as 
integers! v1.1 = v1.01, having v.1 
being implicitly two-digit v.10 
is a disaster)

- Part of request (maybe also 
reply)

- Host: 
- v1.api.service.com, api-

v2.service.com
- URL: 

- /v1/resource, even 
/latest/resource for adventurous

- Query string: 
- /resource?version=2

- Accept header: 
- Accept: application/mytype+v1

- Custom header: 
- X-Interface-Version: 1.0

- Request body (JSON, XML):
- {“version”: “1.0”, …}

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

16





Problems with versioning

- Implies full support across versions
- Deployment and development complications

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

18



19.3.2019
COM-EV Microservice architectures and serverless computing 2019

19



19.3.2019
COM-EV Microservice architectures and serverless computing 2019

20



19.3.2019
COM-EV Microservice architectures and serverless computing 2019

21

?

?

?



Problems with versioning

- Implies full support across versions
- Customer may use v1 and v2 simultaneously!
- Unless explicitly somehow managed (see later)

- Deployment and development complications
- Version support built into the application?
- Parallel deployment of multiple versions?

- Stateless services easiest to version

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

22



Stateful service versioning

- Support all versions by a 
single service (code) 

- No “almost but not entirely” 
parallel deployments

- Also potentially a nightmare
to maintain

- req.version match {
case V1API => …
case V2API => …
case V3API|V4API => …

}

- Use multiple backends
- All backend versions use the same 

data storage
- Must be updated together for any 

schema changes
- Can isolate “compatibility” layer to 

old backend versions
- Sometimes stateless translator is 

sufficient
- Format old request à new request

and proxy
- Format new response à old 

response

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

23



Migration

- Idea: Run new and version in parallel but each customer in 
only one

- Migrate customers to the new version
- Customers get to choose when to migrate

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

25





Migration
- Idea: Run new and version in parallel but each customer in only one

- Migrate customers to the new version
- Customers get to choose when to migrate

- Pros
- Removes need of explicit versioning from interface
- Version to be used becomes part of the customer configuration
- Migration on customer’s own pace

- Cons
- Requires explicit customer information (+ no SLA on anonymous APIs)
- Schema changes and data migration (Rollback? Lots of data to transfer?)
- Gateway has to know which version to use (dynamic)

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

27



Adaptable protocols

- Idea: Let the protocol itself be resilient and adaptable
- Implicitly by presence or absence of fields in data or messages
- Explicitly through capability negotiation

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

28



Implicit adaptability in data
- Assume two request formats (old and 

new)
- fullname or first_name + last_name

fields
- if (req.json.first_name && 

req.json.last_name)
full_name =
req.json.first_name + “ “ +
req.json.last_name

else if (req.json.full_name)
full_name = req.json.full_name

else
???

- Client-side adaptability really only
relevant if multiple endpoints

- HTTP, …

- Potentially could have schema 
(OpenAPI?) that informs the 
client whether a field must be 
recognized or whether is 
optional

- You will find these mechanisms 
in some protocols

- Usually overkill (on problems 
you’re likely to encounter)

- Can become quickly very hairy
- Test coverage!

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

29



Capability negotiation
- SMTP, IMAP, ISAKMP etc. examples

- Session-oriented protocols
- * OK The Microsoft Exchange IMAP4 service is ready.

1 capability
* CAPABILITY IMAP4 IMAP4rev1 AUTH=PLAIN AUTH=NTLM 
AUTH=GSSAPI SASL-IR UIDPLUS MOVE ID UNSELECT CHILDREN IDLE 
NAMESPACE LITERAL+
1 OK CAPABILITY completed.
2 authenticate PLAIN
... 
2 OK AUTHENTICATE completed.

- Client-server (IMAP, SMTP) or peer-to-peer (ISAKMP)
- Probably overkill for most interfaces

- Although potentially useful when you control the client library

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

30



Image: Monty Python’s Holy Grail (movie)



Holy grail of service evolution

- No explicit versioning
- “It just works!”

- Backward-compatible changes during transition
- “It just keeps on working!”

- Customer versions are known accurately
- Interface contracts (per-customer versioning)
- Alternatively you have a binding obsolescence policy
à Able to know accurately when backward-compatibility can be safely 

removed
- Of course, this is not trivial and may be impossible to achieve

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

32



Examples



AWS resource id expansion

- Original resource IDs 8 
characters long

- Plus type prefix, e.g. “i-<8 
chars>”, “sg-<8 chars>”

- 168 = 32 bits =
~ 4 billion (109)

- Currently resource ids 17 
characters
1617 =~ 1020

- First mentions in late 2015
- Announced to be starting in 2016

- Enabled in Jan 2016
- Opt-in e.g. customer’s choice

- Deadline in Dec 2016
- (roughly … a bit more nuanced)

- About 11 months to adopt
- Could opt-in earlier
- After deadline, would not receive 

shorter ids from APIs
- Existing old ids continue to be valid

- Provided APIs for querying id 
length and opting in!

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

34

https://aws.amazon.com/blogs/aws/heads-up-longer-ec2-ebs-resource-ids-coming-in-2016/
https://aws.amazon.com/blogs/aws/theyre-here-longer-ec2-resource-ids-now-available/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resource-ids.html


Twitter API cleanup

- Removal of some API 
features in 2018

- “two legacy developer tools 
used by about 1% of third-
party developers” (link)

- Mixed reactions

- Rationale?
- Pretty vague about that ”1%”

– a single developer could 
easily account >50% of traffic

- Business needs? Replacement 
API has $$$ tiers

- 3 month grace period

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

35

https://blog.twitter.com/official/en_us/topics/product/2018/investing-in-the-best-twitter-experience-for-you.html
https://www.theverge.com/2018/8/16/17699626/twitter-third-party-apps-streaming-api-deprecation


IPv6 adoption

- Original ”interface” goof
- IPv4 (1981)
- Only 232 unique addresses
- Has lead to widespread NAT

use – bane of other protocols
- Top-level RIRs exhausted 

pools of free address blocks in 
2011

- IPv6 as a replacement
- 2128 address space (~ 1038)
- Draft standard in 1998
- 21 years later adoption at 25%

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

36

Image: Google IPv6 statistics

https://www.google.com/intl/en/ipv6/statistics.html


Future-proofing 
interfaces

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

37



Be conservative in what you send, 
be liberal in what you accept

(Postel’s law)

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

38



Future-proofing interfaces

- Adaptability vs. evolution
- Adapting the existing interface to work with new needs
- Evolving a new version of the interface for new needs

- Interface adaptability should not be a default!
- Only when changes are expected to occur, but details unknown
- Extensibility in interfaces comes at cost: implementation, data 

transfer, complexity, …
- Versioning is often way cheaper to do

- When would be applicable?

19.3.2019
COM-EV Microservice architectures and serverless computing 2019

39



Extensibility in data formats

- Extensibility in the transit 
data representation

- Unconstrained key-value
maps easy to extend

- Most marshallers map 
“objects” to maps

- Avoid single-value lists, prefer 
maps
[1,2,3,4] vs. 
[{“value”:1},{“value”:2}
,…]

- Added fields should work 
with old marshallers
- {“value”:1,”modified”:”…”}
- type response1 struct { 

Value int `json: »value"` 
} 
type response2 struct { 

Value int `json: »value"` 
Modified string 

`json: »modified"` 
}

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

40



Extensibility in data reception

- POST should try to work even if missing fields
- “Sane defaults”

- PUTs should gracefully handle missing fields
- Difference between PUT /user

{”fullname”: null},
{“fullname”: “”}, and
{}

- Same logic applies to other protocols (gRPC, Thrift)
- Though requires planning

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

41



Planning for 
evolution



What can you do in advance?

- Define your commitment to 
past versions in SLA

- Different commitment for
paying customers and free 
users

- Decide on approach
- Versioning may be difficult to 

add later
- Host vs. request vs. path vs. 

parameter? Implicit? 
Adaptability?

- Future-proof ing interfaces
- POST / PUT logic
- JSON: use maps
- gRPC: see here
- Consider even if explicit 

versioning is used!

- Monitoring and metrics?

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

43

https://blog.envoyproxy.io/dynamic-extensibility-and-protocol-buffers-dcd0bf0b8801


What can you do in advance?

- Understand your environment
- Internal and external customers, stakeholders, their needs
- Business goals

- Try to predict which dimensions will be critical
- Auditability, performance, security, data, scalability, …

- These should guide understanding what initial choices to 
make

- They may be wrong, of course

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

44


