
Serverless 
computing
21.3.2019
Santeri Paavolainen



Serverless

- “Serverless” (or Function-as-a-Service, FaaS)
- There is always some hardware somewhere (servers)
- Operates at a function or a single service level (one or more 

“endpoints”)
- ”Someone else” is responsible for
- Providing hardware
- Scaling up and down as needed
- Handling log collection

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

2





Why serverless?

- Simplicity
- Removes lot of operational concerns related to resource 

management
- Scalability

- Always a goal for potentially Internet-scale services
- Helps guarantee customer satisfaction even under unexpected loads

- Costs
- While not definite, anecdotes abound of massive cost savings (wrt/ 

VMs and containers)

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

5



Why not serverless?
- Tooling is now better

- It was abysmal previously, but has it gotten good enough? Stable?
- Testing and development

- Getting better, but still friction that doesn’t exist with 
container/instance based services

- Unbounded costs
- Probably more of a psychological thing, but theoretically a DDoS or 

programming bug can blast your budget
- Deployment coordination

- Errr, are you deploying a service, a function, or what?
- Summary: Lots of friction between existing “ways of working”, and 

tooling not yet fully formed (best practices still in flux?)

20.3.2019
COM-EV Microservice architectures and serverless computing 2019

6



Technical limitations

- These vary from service to service
- Limitations

- Maximum runtime (seconds, e.g. request processing timeout)
- Memory limits
- No persistent local storage (even containers have more)

- Latency
- Can be higher
- “Cold functions”

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

7



Event model

- Serverless uses an event model
- For HTTP, receives a request event

- Many other event sources
- Data streaming
- Messages from queues
- IaaS internal events (like bucket upload complete)
- Chimes (e.g. cron triggers)

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

8





Services and tools

- AWS Lambda probably best known
- Technically not the first, but close enough …
- All IaaS vendors have FaaS offerings now

- Kubeless, OpenFaaS, …
- Development frameworks (tons and tons)

- Caveat Emptor: Littered with abandoned and superseded projects!
- Serverless Framework, Chalice, AWS SAM, … 
- Not really necessary on a fundamental level (it’s just code! upload 

it!)

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

10



Serverless vs. microservices
- Is a serverless ”thingie” a microservice
- Or is it a component in a microservice?

- Depends …
- If serverless function uses SQL or Redis cluster for state?
- If providing frontend services (filtering, authentication etc.) for another 

serverless? Or a containerized backend?

- Consider service boundaries and coupling
- Clear boundary and closely coupled?
- Unclear boundary and loose coupling?

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

11



Some patterns

- API gateways
- Separate state management

- Another microservice
- Delegate state storage and management elsewhere

- Some stateful component specifically for this purpose
- FaaS as a component in otherwise stateful service

18.3.2019
COM-EV Microservice architectures and serverless computing 2019

12



Kubeless example

- Setup steps
- ”Hello world” as a function

- Not using any framework on purpose (thus specific to Kubeless)

- Ingress
- Add HTTP ingress controller (https://kubeless.io/docs/http-

triggers/)

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

13

https://kubeless.io/docs/http-triggers/


Unikernels



Current serverless implementation

- Serverless functions actually run in containers 
- Management and allocation done by FaaS

- Can we do without containers?

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

15



Unikernels

- Pretty much cutting edge
- But look at AWS Nitro hardware architecture …

- Idea: Use a separate virtual machine to handle each event
- Application packaged directly as a virtual machine image
- Runs as a kernel in the VM

- See http://unikernel.org/projects/

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

16

http://unikernel.org/projects/


Why and why not?

Pros
- Minimizes overhead
- Simplifies resource 

management
- Increased isolation
- Now across events!

- It’s cutting edge

Cons
- Most definitely cutting edge 

research area
- Lack of tooling
- Lack of management tools
- Maturity (not) of tools
- No established practices

- Unclear whether will bring any 
benefits

- VM boot delay
- Runtime initialization delay

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

17



Process (roughly)

1. Write code
2. Compile
3. Package into binary
4. Deploy binary

- Need to abide by the calling 
convention of the runtime 
environment

- How are event data passed in?
How does data go out?

- Runtime environment
- Solo5
- KVM/QEMU

- Library selection
- MirageOS (OCaml!)
- IncludeOS (C++)
- LING (Erlang)

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

18





Summary

- “Serverless” is an abstraction
- Functionally does not offer anything significantly new
- But: can be easier to use and deploy; can be cheaper

- The field of “serverless” still maturing
- Best practices not always established; not always fully supported by 

tooling
- Tooling and frameworks churn

- Just like using containers, requires some setup for local 
testing

- Unikernels cutting edge, but no clear benefits yet

21.3.2019
COM-EV Microservice architectures and serverless computing 2019

20


