Homework 5

CIV-E4080, Material Modeling in Civil Engineering L

Engineering viscoelasticity

Introduction

The purpose of this homework is to study classical viscoelasticity concepts through solving examples
in order to consolidate what you’ve learn till now from textbooks and during lectures. The content
of this homework are the constitutive models of linear viscoelasticity listed below:

o Maxwell model

e Kelvin-Voight model

e Standard linear solid model

e Generalized Maxwell model

e Kelvin chain model
There are total 7 problems in this home work but ONLY 4 are compulsory. Problem 6 is obligatory.
Other problems can be solved for extra marks.
Readings

Chapter 4.3: Lemaitre and Chaboche, Mechanics of Solid Materials.
Also see references at the end of this homework set.



Reminder - Viscoelasticity, in short & in words

Viscoelastic materials have i) a time
dependent response to constant
loading as for instance, to force,
temperature and strain, and ii) they
exhibit also rate depend responses. iii)
depending on the duration of the
excitation (fast as in shock problems
or slow as in long-term stability
problems), the same material may
exhibit some of solid or fluid behavior
or both of them at the same time.

They have the ability to creep,
recover partially or fully, undergo
stress relaxation and absorb energy.

They possess  some of the combined
mechanical properties of fluid and
solids as related to the stress-strain
response.

Problem 1

[5 points] A material can be described by In a Kelvin-Voigt (KV) model. Consider creep response
of such a material for constant stress o,. Such response is modeled by the following expression,

(t) = 2L — e, (1)

where, 7, = n/E - retardation time and 7 - viscosity of the dashpot
1. Show the above result for creep response of the material. [3 points]

2. Consider the following creep test: A material having E = 600 MPa is initially loaded
with a constant stress op. The constitutive behavior (behavior law) of the material can be
described by Kelvin-Voigt (KV) model.

Half an hour (¢ = 30 min) after applying stress, the measured strain is 0.111. Another hour
later (t = 90 min) , the strain becomes 0.264.

Determine the strain after three hours of loading. [1 point]

After what time the strain reaches back to 0.001 7 [1 point]



Solution

1. We know the expression,

e(t) = 21— ),

Inputting values from two measurements,

0111 = cinrpall — )
0.264 = —60032 5[l - g~ L5hrs/Te]
Dividing equation (3) by (4) and solving for 7.,
T. = 1.97hrs
We can now find oy from equation (3) or (4),
oo = 297.2M Pa

. Expression for creep response of the material becomes,

297.2M Pa
=" T — —t/1.97hrs
“(*) = o0nipa L€ )

Strain after 3 hours is,

297.2M Pa
3h — 1 — —3hrs/1.97hrs =0.39
“(3hrs) = ooarpa 1€ |
When the strain is 0.001, the time (t) is found to be,
297.2M P
e(t) = 0.001 = U1 — emt/197hrs) 5 4 = 14,35

600M Pa



Problem 2

1. Describe concisely the difference between a Creep Test and Stress Relaxation Test. [2
points]

2. The Standard Linear Solid Model

(a) Consider a standard linear solid (SLS). Derive the constitutive equation relating the
overall stress, stress rate, strain and strain rate. The model parameters of the system
are, F, Fy and .

(b) For the standard linear solid discussed earlier, determine the expression of the total strain
€(t) in terms of Ey, Ey and n for the case of constant stress. What is the creep function?

(c) As you may remember, retardation time is defined as 7 = 7/ E [s]. Consider the following
situation: immediately after applying stress, the strain is 0.002 (instantaneous strain),
after 1000 seconds the strain grows to 0.004 and approaches asymptotically 0.006 after
a very long time the strain. Determine the retardation time 7 ?

A Standard Linear Solid Model.

Solution

1. In a creep test, constant stress is applied and strain is measured, whereas, in a relaxation test,
a constant strain is applied and stress is measured.

2. (a)

o =0 =0y (10)
o = E1.€1 = EQ.EQ + 776.2 (11)

. . . o o EQEQ
_ - 4z _ 12
E=€1+ € 5 p (12)

o

(eg—e—el—e—E)

. o o E2 o
€= —F+———(€——= 13
BT n< El) (13)

. E2 o g E2
e+ —e=—+—(1+—= 14
DT 77( E1> (14)



Eg o g El"‘EQ

E+ —e=—+— 15
n En 77( Ey ) (15)
(b) For the case of constant stress,
E
né + Bre = (1+ =)o (16)
Ey
Solving the differential equation of type a*y + b*y = c.
—Ft B+ F
e(t) = K.exp(—=) + (Br+ 2)0 (17)
Ey By

Where K is an integration constant. We know that immediately after applying the stress,
the strain will be entirely from the lone spring (¢; = 0) and so,

g

t=0)=— 1
e(t=0) B (18)
o (EQ -+ El) —0
i BB, B, (19)
—0 —Egt (El + EQ) o E2 —Egt
e(t) = —.ex + c=—.|14+——c¢x 20
(t) o ( ” ) B, EQ[ E ( " )l (20)
(c) .
€(0) = 5~ = 0.00 (21)
g g g g
= — 4+ — =0.006 => — + 0.002 = 0.006 => — = 0.004 22
e(00) E2+E1 >E2+ >E2 (22)
—1000 —1000
€(1000) = 2 + 7~ T feap( )] = 0.004 + 0.002 — 0.004[exp( N (23)
E, E, E,
—1000
¢(1000) = 0.006 — 0.004[exp( )] = 0.004 (24)
—1000
=> 0.004[exp( )] = 0.002 (25)
=> 7 = 1443sec (26)



Problem 3

[5 points] Relaxation experiment for the material : (observation)
After 2 weeks, a loss of 2MPa is observed in a cable while the initial stress was 100MPa.

1. Derive relaxation function (modulus) - Use simple Maxwell model.
2. Determine the characteristic relaxation time from relaxation experiment.
3. What should be the initial pre-stress level in order to keep over 150MPa stress after a year 7

Assume a constant operating temperature of ~ 20° C.

100 _
there is a 90
significant s 80 =06
relaxation loss 0.7

when a.lpplied % 70 2::
stress is more 60 |-
than 70% of 50 I I I 1

::fe:':‘d 10 100 1000 10,000 100,000
: Time (hours)

time for various prestressing level o, /O'Y

Maxwell model relaxation function - The simplest model: o(t) = eo.Ee_%t = 0'067%

7r - The characteristic relaxation time of the material.



Solution

1. Maxwell model is given below,

A &; ‘rg 4] ] 1’1 2
- -—A,r"- f‘\f——-——-[]:———— —

e {
¥ A1k
£
Ivs i
L ) i

The constitutive models for individual components are,

Spring,
o= Fe

Dashpot,

Equilibrium conidtions for the model are,
o=0p =0,

Compatibility conditions are,
€=¢€g T+ €,

€=¢€p+6

The constitutive equation can be obtained as,

. . o o
€:€E+€n:E+E

E
o+ —o = FE¢
n

Applying the known boundary condition for relaxation test, i.e., ¢ = 0, one obtains,

FE do FE

U—i—na dt+170
>d0 FE
= _— = ——0
dt n
d FE
Y= Za
o n



Integrating both sides for 0 to t,

b1 'E
/—da_—/—dt
0o 0 o N
o

o (t)_ =Ey
_>m_en

Where, (0) = oy
—E
=>o(t) =0p.en '
We know that the initial stress, g = €. F

—E

=>0(t) =¢.E.em

The relaxation function is defined as,

We know that, £ = 7p,
=>G(t) = E.en

2. Characteristic relaxation time can be obtained as,

o(2w) = 0g.e/™® = (100M Pa).e~**/™ = 98M Pa

Tr = 98,997Tweeks

3. To keep the stress over 150MPa for over a year (52 weeks),

o(52w) > 150M Pa

00.€”2%/™ > 150M Pa
=> g9 > 254M Pa

(46)

(47)
(48)



Problem 4

[5 points] Consider the mechanical system formed by 3 vertical bars 1, 2 and 3 in tension. The

horizontal beam is infinitely stiff and remains horizontal during the motion.

equations of materials are given below,

A — Cross section area

viscoelas
/7L YC) )y p// r /A7 2
elast . | elast
e ic
Ef Eq

£ \L P=P-H(1)
rolle  p— f_’H(f)
rs

nfinitely S0

Constant initial loading:

0, r<0
pear™ A= >0

The constitutive

Determine the time dependent forces when loaded quasi-statically by a constant force P = P.H(t).

(Inertia terms are ignored)

The material behavior (constitutive law)
Member 1 : € = ¢/FE; (Hooke element)

Member 2 : € = 0/Ey + o/n (Maxwell element)



Solution

Equilibrium of Forces is,
Also,

For bars 1 and 3,

For bar 2,

Compatibility condition is,

Hence,

Integrating with respect to t,

At t = 0, when a Force (P) is applied, all the deformations are elastic, i.e.,

Also,

Fort =0, C = S,

Similarly,

25, + Sy =P
25 4+ Sy =0 => S = —25,
e=51/A.E;
€ = Sy/2A.Ey + S5/2.An
€= €] = €9

=> —52/E1 = 52/E2 + S2/n

.1 1 S
> 2(E1+E2)+ ;

S2+0682:0

Sy =Ce ™

.S S,
€ = =
AE,  2.AFE,

. . E; .
251+ 85, =P => (2. +1)S, =
L (2o, + 1%

. Ey
C=58=P/(1+—
2= P/(1+ )
=> 9, = LEe—t/ﬁ(l/&-l-l/EQ)
= 1+

1
=> 58, =5(P = 5)

10

(60)

(61)

(62)

(63)



Problem 5

Consider a short reinforced concrete column concentrically loaded by a constant compressive force

P =P H(t), where H(t) being the Heaviside unit-step function.

The material behavior (constitutive laws).

e Steel: Considered elastic (as compared to concrete for the time durations considered here).

Os = Eses

(64)

e Concrete: Viscoelastic having obeying constitutive law of a Standard Linear Solid (SLS) in

the form B BB
Uc+_ZUc:E0€c+ - 2607
n n

where Fy = E| + E5 being the the initial modulus.

steel

& N /"74’ Es
/Ar EO- EI

concrete
Assume the steel reinforcement is perfectly bonded to the concrete, €, = €.

Question:

Determine the stresses in concrete and steel (separately).

Hints:

Compatibility and equilibrium.....
Cross-section area, A, + A, = A => A, , A. ~ A.
Steel ratio, n = A, / A.

11

(65)



Solution

The material properties are;

Steel,
Os = Es€57 0:5 = Esés
Concrete,
E. FEE
dc+_QUc: ! 26c—i_EO‘E.c
n

Where, By = B, + E,
The applied Force can be written as,

Compatibility equation,

We can write from strains,

o 1
= = = Py — A..
€=, = F A, Lo Ao
Fort > 0,
E2 E1E2 1 EOAC .
c [ P _Ac c) — c
0.+ —o 7 ESAS(O o) ESASU
EyA. Ey E A, 1 EWEy
=> (1 -+ —(1 e = ——-—DP
ZUr At U ) = A
=> 0.+ Ao, = CO
Where, A = 82 54005, Co = Lt o
When t=0,
Ey
c = K - Py — Ac c
0c(0) = Eoe(0) ESAS[ 0 o(0)]
E()P()
=> 0.(0) =
7 ( ) ESAS + EOAC
For a constant Force, Fy
Co
A=—
A
Homogeneous part of the general solution is,
oen, = Ch.exp(—At)
C
o. = Cr.exp(—\t) + 70
The initial condition, o.(0) = oy
Co Co
0c0—01+7—>01—0c0—7

12

(66)

(67)

(79)



=> 0, = 0c.€xp(—At) + %(1 — exp(At))

Stress in steel is, o, = Eye = &; - ﬁ—:ac
st A Eh BB
Ay AyEA+ EyA. B As + EpA.
Fort — > o o E_1p
Jc(t—>oo)270:m
P R P O E.Ry

A_s a A_sEsAs + ElAc B EsAs + ElAc

13

(80)

(81)

(82)

(83)



Problem 6

[5(KV) + 5(SLS) points] Consider the cantilever AB loaded as shown. The material is visco-elastic.

%('f)
IR

yE.‘L,‘Jh(t)H TL‘;% b o(Lt)=?

A\

Loading history a)

1+ q(6)
%
q(t) = qoH(t)
: ey — t
0
Loading history b)
1= ?(‘H
(A"b —— '
|
]
: | > t
OWE S |
Creep response: ) 1 .
8(1‘):0'0{E+E—2[1—e K ]:|EGOJ(Z)

:>s(t)=%[1—e7’]

Consider two separate cases: 1) Kelvin - Voigt (KV) and 2) Standard Linear Solid (SLS) visco-elastic
materials.

Our aim is to determine the tip displacement as a function of time for cases 1) and 2) under
two different loading history hypotheses a) and b).

e Case a) The loading is, ¢(t) = qoH (t). Where, H(t) is Heaviside unit-step function.
e Case b) The loading history is shown in figure; it grows linearly till #; and is then kept

constant.

Question:

Determine the history of tip displacement for the two materials (KV) and (SLS) for both loading
histories.

Extra 10 points

Using FEM verify your results. Use required numerical values for the material constants, when
needed.

14



Problem 7 - Visco-elasticity: integrating the ODEs

This is only one exercise from 5...6. The student should solve at least four exercises.

1 The Standard Linear Solid

Assume a Linear Standard Solid. Derive the ordinary differential equation below:

SLS:
(o)
0+ 76 = Gooe + TGoé (84)
E1Es n
oo — 7G =k T = 85
B+ B YT T B+ B (85)
5= Gy ? (86)
T T
&= f(e0) (87)

The differential equation (84) or (87) can be numerically integrated using appropriate initial con-
ditions for any known history of the deformations or of the stresses, respectively.

In order to determine some material properties of the visco-elastic material the cyclic strain
history below is imposed and the corresponding stress history was recorded.

e(t) = € sin(wt), (88)

where w =1 (1/s), 7 =1 (s8) , €0 = 0.008, G, = 550 MPa, Gy = 1.5 GPa. The initial conditions
are t = 0,¢(0) =0,0(0) = 0.

2 The Problem

The idea is to play around a response of a visco-elastic material (SLS) and obtain some elements
of understanding of the mechanical behaviour of such class of materials.
Solve! So, solve the stresses by integrating analytically [5 points] and numerically [5 points].

1. determine the time-series of the response in term of stress o(t) for the given periodic excitation
€(t)

'Hint! There is a similar solved problem in the course supporting material. You can use the Matlab-scripts, two
m-files, I put for the time-integration of the stresses (numerical integration of the ODE).

15



2. draw the graphs of o(t) and €(t)
3. draw the graph o — € for few cycles in order to observe the hysteresis loop

4. estimate from the delay (the lag) At = §/w of the two time-serie; the excitation €(t) and
the response o(t) (scale adequately these graphs to draw them on the same axes to estimate,
graphically At)

5. give an estimation for the storage F’ and loss modulus E”

Estimate from the delay (the lag) At = §/w of the two time-serie; the exitation €(¢) and the
response o(t) Give an estimation for the storage E’ and loss modulus E”.

For the numerical time-integration you can use and edit the two m-scripts [ put in MyCourses:
Main-SLS-distribute.m and Main-SLS-distribute.m.

16
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Not exclusive Examples for reading
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1 E{P 1 Fundamental Aspects of Viscoelastic Response 1 - .
1 .
T apstact . S p— l Reading: A concise course
: " 1.1..Introduction : E . . from MIT:
1 i 1.2...The Nature of AmorphousAmorphous 1 . 00
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: [P 13 Mechanical Response of ViscoelasticViscoelastic : VISC e |a Stlclty David Roylance

BT == v vl 2tCri s m Department of Materials Science and Engineering

Massachusetts Institute of Technology

- 1.4...EnergyEnergy Storage and Dissipation

Cambridge, MA 02139 . .cOV
AP 15 GlassGlass TransitionTransition and Regions of r\: \nsC :
ViscoelasticViscoelastic Behavior October 24, 2001 \j
P ...AgingAging of ViscoelasticViscoelastic Materials Go\]_’fs/
1 Introduction pt

[P References

® D 2 Constitutive Equations in Hereditary Integral Form This document is intended to outline an important aspect of the mechanical response of polymers

and polymer-matrix composites: the field of finear viscoelasticity. The topics included here are

aimed at providing an instructional introduction to this large and elegant subject, and should

not be taken as a thorough or comprehensi either as

footnotes to the text or listed separately at the end of the notes should be consulted for more
2 {F 5 Structural Mechanics tharough coverage. : . ) .

Viscoelastic response is often used as a probe in polymer science, since it is sensitive to

&I 6 Temperature Effects the material's chemistry and microstructure. The concepts and technigues presented here are

i i i o important for this purpose, but the principal objective of this document is to demonstrate how

E{F 7 Material Property Functions and Their Characterization } linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so

that structures containing viscoelastic components can be designed and analyzed.
‘While not all polymers are viscoelastic to any important practical extent, and even fewer

=P 3 Constitutive Equations in Differential Operator Form

&P 4 constitutive Equations for Steady-State Oscillations

& [P g Three-Dimensional Constitutive Equations

B D 9 Isothermal ! wundary-VaIue Problems are linearly viscoelastic!, this theory provides a usable engineering approximation for many
N . applications in polymer and composites engineering. Even in instances requiring more elaborate
i o Nave P an treatments, the linear viscoelastic theory is a useful starting point.
- 2rgy T |

2 Molecular Mechanisms

a
When subjected to an applied stress, polymers may deform by either or both of two fundamen-
tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting
the atoms may distort, moving the atoms to new positions of greater internal energy. This is a
small motion and oceurs very quickly, requiring only = 107*? seconds.

If the polymer has sufficient molecular mobility, larger-scale rearrangements of the atoms
may also be possible. For instance, the relatively facile rotation around backbone carbon-
carbon single bonds can produce large changes in the conformation of the molecule. Depending
on the mobility, a polymer molecule can extend itself in the direction of the applied stress, which
decreases its conformational entropy (the molecule is less “disordered”). Elastomers — rubber
— respond almost wholly by this entropic mechanism, with little distortion of their covalent

Have a look: o e thet el sy

"For an overview of nonlinear viscoclstic theory, see for instance W.N. Findley et al., Creep and Relazation
of Nondinear Viscoclastic Materials, Dover Publications, New York, 1969,

http://web.mit.edu/course/3/3.11/www/modules/visco.pdf (30.11.2016)

https://ocw.mit.edu/courses/
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Not exclusive Examples for reading:

/79‘,9
1| B CONTINUUM MECHANICS for ENGINEERS = e /o
&P Chapter 01: Continuum Theory O‘.
& [P Chapter 02: Essential Mathematics
& [P Chapter 03: Stress Principles CO NTl N U U M

iy Chapter 04: Kinematics of Deformation and

Motion
i Chapter 05: Fundamental Laws and Equations

[P chapter 06: Linear Elasticity
[P chapter 07: Classical Fluids
r Chapter 08: Nonlinear Elasticity O r EN G I N E ERS
e Chapter 09: Linear Viscoelasticity
E{P CONTINUUM MECHANICS for ENGINEERS. Second Edition
= Linear Viscoelasticity
[ 9.1 Introduction

[ 9.2 viscoelastic Constitutive Equations
in Linear Differential Operator Form

1
|

[P 9.4 Creep and Relaxation
Pos Superposition Principle, Hereditary
Integrals
[P 9.6 Harmonic Loadings, Complex
Modulus, and Complex Compliance
[ 9.7 Three-Dimensional Problems, The
Correspondence Principle

[P References
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ECHNICAL LITERATURE, PRAGUE

Viscoelasticity

i In general, almost all the materials exhibit less or
more several inelastic properties some of which will
be covered in this short course.

Viscoelasticity, in short:

v" In general, stress in such materials depends on strain
and the history of strain

v Such properties can be modeled by the theory of
viscoelasticity

Viscoelastic materials have i) a time
dependent response to constani
loading as for instance, to force,
temperature and strain, and ii) they
exhibit also rate depend responses. iii)
depending on the duration of the

Content i1 excilation {fast as in shock p.rt';vblems
1 * experimental observations: evidence of viscoelastic | | Orslow asin long-term St'%mhty
i behavior problems), the same material may

exhibit some of solid or fluid behavior
or both of them at the same time.

¢ stress relaxation at constant strain

* creep at constant stress

¢ strain-rate dependence

¢ constitutive models in the rate form:
» Maxwell model
» Kelvin-Voight model
» Standard linear solid model

» Generalized Maxwell model
» Kelvin chain model

They have the ability to creep,
recover partially or fully, undergo

1 .

1 stress relaxation and absorb energy.
They possess some of the combined
mechanical properties of fluid and
solids as related to the stress-strain
response.
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gWhy the constitutive equation is needed*? ]:' (O' c.e e T T) =0
The structure of the problem N

Example problem : think of the need of solving the equation of motion or the
quasi-static equilibrium in order to determine the field of displacements
within a body having a rate dependent mechanical response.

(%, = 0) = i, (¥)

———————————————————————————————————

: i
1 I
1 I
! )
1 |
I * ¢ The unknown field of |
: _ displacements: u ' :
I+ The equation of motion or di o
v 6+ = pu, n Q I

: also of equilibrium when . pf pu, u(x,nH=\|v :
! pti =0 ™~ ]
I
I P : . !

* The constitutive equation or . . 1
I —
| L_the behavior law: F(0.0.6,61.1)=0 wl |
: & * Thekinematic g=V" | y :
1 relation: :
: * The boundary conditions: % wil
1 B e e e e e e AR ES e = |
: * The initial conditionat =0, in Q In this short course, explicit i
. I
1 |
1 |
' ]

classical viscoelastic
mechanical response
... to mathematically close the problem 1

! 1
! 1
] :
The initial solution is given % i forms for Flo,6,6,€)=0 |
1 will be derived for some i
l !
I i
I i
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