Homework 2

CIV-E4080, Material Modeling in Civil Engineering L

Introduction

Recall of a necessary minimum of some basic concepts and equations of solid mechanics necessary to follow this course.

Readings

1. Chapter 1 from: D. Gross and T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics.
2. Reddy; Chapters 3 (kinematics of continua) and 4 (stress measures)
3. Also refer to the Appendix I added to MyCourses. Recall: Stress invariants.

Problem 1 - Stress Invariants

[5 points] Consider the plane stress state below,

$$
\sigma=\left[\begin{array}{ccc}
\sigma_{o} & 0 & 0 \tag{1}\\
0 & \alpha \sigma_{o} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where, $\alpha \in[-1,1], \sigma_{0}>0$ and x_{1}, x_{2}, x_{3}, coordinates in the basis $\overrightarrow{i_{1}}, \overrightarrow{j_{2}}, \overrightarrow{k_{3}}$.
Experimental setting giving rise to such bi-axial stress state is often used to determine parameters of material models.
Determine as a function of the parameter α,

1. The mean stress α_{m}, called also the hydrostatic pressure - p .
2. The equivalent, von Mises, stress $\left(\sigma_{e}=\sqrt{3 J_{2}}\right)$.
3. Lode angle $\theta \equiv 1 / 3 \arccos \left(3 \sqrt{3} / 2 \cdot J_{3} / J_{2}^{3 / 2}\right)$
4. The maximum shear stress $\tau_{\text {max }}$.
5. The normal of the maximum shear stress plane

What is the stress state corresponding to $\alpha=-1$?

Solution

1. Hydrostatic Pressure / Mean Stress, $\alpha_{m}=\left(\sigma_{o}+\alpha \sigma_{o}+0\right) / 3=\sigma(1+\alpha) / 3$
2. $J_{2}=\frac{1}{6}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]=>\frac{1}{3} \sigma_{o}^{2}\left(1-\alpha+\alpha^{2}\right)$
$\sigma_{e}=\sqrt{3 J_{2}}=>\sqrt{\left(1-\alpha+\alpha^{2}\right)} \sigma_{o}$
3. $J_{3}=$ dets $=>-\frac{1}{9}(2-\alpha)(2 \alpha-1)(1+\alpha) \sigma_{o}^{3}$

$$
\theta \equiv 1 / 3 \arccos \left(3 \sqrt{3} / 2 \cdot J_{3} / J_{2}^{3 / 2}\right)
$$

$$
=>1 / 3 \arccos \left(3 \sqrt{3} / 2 \cdot\left(-\frac{1}{9}(2-\alpha)(2 \alpha-1)(1+\alpha) \sigma_{o}^{3}\right) /\left(\frac{1}{3} \sigma_{o}^{2}\left(1-\alpha+\alpha^{2}\right)\right)^{3 / 2}\right)
$$

4. $\tau_{\max }=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)=>\frac{1}{2}\left(\sigma_{o}\right)$
5. The maximum shear shear stresses are in planes forming angles of 45 degrees with Principal Planes.

Problem 2 - Pressure Vessel

[5 points] Consider a thin-walled metallic cylindrical pressure vessel shown in the figure below.

t - thickness $\quad \alpha>0$,

The pressure vessel (the thin walled tube) is loaded with an internal pressure p_{o} and a torsion moment $M_{t}=\alpha p_{0} t D^{2}$ resulting in a bi-axial membrane stress state. Assume a membrane stress state for the tube with a cylindrical symmetry.

1. Determine the stress state in the thin-wall of the cylinder (membrane stress state with a cylindrical symmetry).
2. Plot the stress state in the deviatoric plane for $\alpha>\ldots$ i.e., plot a 'stress point' $P(\sigma)$ using the coordinates (ρ, θ)

Hints

$J_{2}=\frac{1}{2} s: s, J_{3}=\operatorname{det} s$, Deviatoric radius: $\rho=\sqrt{2 J_{2}}$ and Lode angle: $\cos 3 \theta=\left(\frac{3 \sqrt{3}}{2} \frac{J_{3}}{J_{2}^{3 / 2}}\right)$.

Solution

1. Since, the thickness to diameter ratio is very small, $\mathrm{t} / \mathrm{D} \ll 1$, we can assume to have uniform stress distribution in the shell and a plane stress state. The respective stress equations are, $\sigma_{x}=\frac{1}{2} p_{o} \frac{D}{t}, \sigma_{y}=\frac{1}{4} p_{o} \frac{D}{t}, \tau_{x y}=M_{x} / W_{v}=\alpha p_{o} t D^{2} / \frac{1}{4} \pi D^{2} t=(4 \alpha / \pi) p_{o}$
The Stress Matrix is,

$$
\begin{gathered}
\sigma=\left[\begin{array}{ccc}
\frac{1}{2} \frac{D}{t} & (4 \alpha / \pi) & 0 \\
(4 \alpha / \pi) & \frac{1}{4} \frac{D}{t} & 0 \\
0 & 0 & 0
\end{array}\right] p_{o} \\
\sigma=\left[\begin{array}{ccc}
\frac{1}{2} & \beta & 0 \\
\beta & \frac{1}{4} & 0 \\
0 & 0 & 0
\end{array}\right] p_{o} D / t
\end{gathered}
$$

Where, $\beta=4 \alpha t / \pi D$
2. The mean stress is,

$$
\sigma_{m}=\frac{1}{3} \operatorname{tr} \sigma=>(1 / 4) p_{o} D / t
$$

The deviatoric stress becomes,

$$
s=\left[\begin{array}{ccc}
\frac{1}{4} & \beta & 0 \\
\beta & 0 & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right] p_{o} D / t
$$

$J_{2}=\frac{1}{2} s_{i j} s j i=\frac{1}{2}\left(2 \frac{1}{16}+2 \beta^{2}\right) p_{o}^{2} D^{2} / t^{2}=>\left(\frac{1}{16}+\beta^{2}\right) p_{o}^{2} D^{2} / t^{2}$
$J_{3}=\operatorname{det} s=>\frac{1}{4} \beta^{2}\left(p_{o} D / t\right)^{3}$
Devitoric Radius, $\rho=\sqrt{2 J_{2}}=>\sqrt{\frac{1}{8}+2 \beta^{2}} p_{o} D / t$
Lode Angle, $\cos 3 \theta=\frac{3 \sqrt{3}}{2} \frac{J_{3}}{J_{2}^{3 / 2}}=>\frac{3 \sqrt{3}}{8} \frac{\beta^{2}}{\left(\frac{1}{16}+\beta^{2}\right)^{3 / 2}}$
The stress point on deviatoric plane can be plotted by polar coordinates ρ and θ as a functions of β, which is directly proportional to α.

