
Elastic orthotropy
Bending of plates

Due date: 30.4.2017

Small project [15 points (obligatory) + 15 points (bonus) ]

Elasticity

Homework #  2(3)  

Reading: Chapter 7.2 from: 
I put the necessary ‘equations’ in the end slide



Problem 6: Orthotropic plate or laminate

Physical problem: Consider the laminate plate (Glue Laminated Timber, GLT) 
formed by three perfectly bonded layers having respective principle material 
directions L, T and R (cf. figure).

The plate is under a transversal loading. The plate can freely rotate along the 
four support lines (freely supported, hinged on all sides). The individual 
layers should be modeled as a linear elastic orthotropic material.

Problem [BONUS, elective 15 pnts]:  Using Abaqus,
Comsol (easy to use) or any  other  FE-software you need.

1. Determine the displacement along the horizontal center lines
2. The stress distributions at a section at the center and close to the 

supports.
3. Analyze your results

Problem [obligatory, 15 pnts]: You know well the thin plate theory of 
orthotropic plates (cf. textbooks, the pdf-version in your previous master 
course of plate and shells) and you are a clever and responsible engineer 
who wants somehow to check his FE-results. For this purpose you want to 
obtain an analytical (or semi-analytical) solution for comparison with FE-
results.  Do you have any idea how to proceed? If yes, then how? Do it.
Hint: one can find an equivalent one layer orthotropic plate having effective
bending and torsional rigidities integrated from the 3-layer plate in order to 
conserve strain energy (cf. the mentioned textbook). Other ways toward the 
solution exist and are allowed.

Dimensions are in mm.

L – longitudinal
T – tangential
R – radial

Ref: this homework, except the bonus,  was 
adapted from the course:

kPa20q

Due date: 30.4.2017



See how simple, in this example, if one uses Comsol

NB. This is not the example of our problem



Some useful tables for wood
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In the assignment, a plate consisting of three orthotropic layers were to be analyzed using a) 

Abaqus software and b) analytically for comparison. The geometry of the plate is shown in 

the Figure 1 and the material properies of the layers are given in the Table 1. The plate is 

loaded with uniform load q = 20 kN/m2. 

 

Table 1. Material properties of the material. 

EL [MPa] ER [MPa] ET [MPa] GLR [MPa] GLT [MPa] GRT [MPa] νLT νLR νRT 

11990 820 420 620 740 240 0.7749 0.6071 0.6013 

 

a) Modelling the plate in Abaqus software 

Model 

The plate was modelled in Abaqus as a shell using 4-node shell elements (S4). The stiffness 

properties of the plate were given by defining composite layup for the plate, which Abaqus 

uses to calculate the stiffness of the plate for the calculation. All the layers were given same 

orthotropic material properties and the direction of the layers were defined in the composite 

layup. The material coordinate system was chosen so that; 1-axis refers to L-direction, 2-axis 

refers to T-direction and 3-axis refers to R-direction, which leads to properties below: 

E1 = EL = 11990 MPa 

E2 = ET = 420 MPa 

E3 = ER = 820 MPa 

G12 = GLT = 740 MPa 

G13 = GLR = 620 MPa 

G23 = GRT = 240 MPa 

Figure 1. The plate given in the assignment. 
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ν12 = νLT = 0.7749 

ν13 = νLR = 0.6071 

ν23 = νTR = νRTET / ER = 0.3089. 

The model is shown in the Figure 2. Top and bottom layers are orientated in x-direction and 

the middle layer in y-direction. Boundary conditions on all the edges are pinned 

(u1 = u2 = u3 = 0). Material properties are shown in the Table 2. Abaqus takes transverse 

shear deformations automatically into account, so the analysis was done twice; in the case a) 

using given material properties and in the case b) using 1000x higher transverse shear moduli 

to neglect the effect of the transverse shear deformation.  

Table 2. Material properties in the analyses. In the case a) properties all the properties of the material as given 

is used and in the case b) transverse shear moduli are increased 1000x to neglect effects of the transverse shear 

deformation in the analysis. 

 E1 [MPa] E2 [MPa] G12 [MPa] G13 [MPa] G23 [MPa] ν12 

Case a) 11990 420 740 620 240 0.7749 

Case b) 11990 420 740 620x103 240x103 0.7749 

 

 

Figure 2. The model of the plate in Abaqus. All boundaries are pinned and uniform load q = 20 kN/m2, acting 

downwards, is applied on the plate. 

Results 

Deflection of the centerlines of the plate along x- and y-directions are illustrated in the Figure 

3 and Figure 4. The maximum deflection is found at the mid-point of the plate and it was in 

the case a) wmax = 5.42 mm and in the case b) wmax = 5.07 mm.  



Problem 6: Orthotropic plate or laminate 

Joonas Jaaranen 

 

Figure 3. Deflection along the centerline in x-direction. 

 

Figure 4. Deflection along the centerline in y-direction. 

The stress distributions at mid-point of the plate (x = 0.5, y = 0.3) and and near the corner 

(x = 0.1, y = 0.06) over the sections are plotted in the Figure 5 and Figure 6, respectively. The 

stresses had only small differences between the cases a) and b), so only stresses from the case 

b) are illustrated.  
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Figure 5. Stresses over the section at mid-point of the plate (x = 0.5 m, y = 0.3 m). 

 

Figure 6. Stresses over the section near the corner of the plate (x = 0.1 m, y = 0.06 m). 

Analysis of the results 

The deflections from the model are as expected, including transverse shear deformations in 

the analysis produces larger deflection. In this case the effect in quite limited, 7% increase in 

deflection, due to low thickness to span ratio of the plate. 

The variation of the stresses in the section at both points, mid-point and near the corner point, 

is as expected. The layers with higher elastic modulus in certain direction display higher 

stresses in the corresponding direction. In the Figure 5 (mid-point) torsional stresses are close 

to zero, as they should be theoretically, since torsional moment should be zero there.  
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In the Figure 6 it can be seen that torsional stresses are high. This also in line with the theory, 

since the highest torsional moment should exist near the corners, leading to high torsional 

stresses. 

b) Analytical modelling of the plate 

Given plate can be homogenized to a plate with orthotropic properties by equation strain 

energies of the actual composite plate with strain energy of the orthotropic homogenous plate. 

Strain energy of orthotropic plate can be given as 

𝑈 =
1

2
∬[𝐷𝑥 (

𝜕2𝑤

𝜕𝑥2 )

2

+ 2𝐷𝑥𝑦
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2

+ 4𝐷𝑠 (
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)

2

] 𝑑𝐴

 

𝐴

. 

In the composite case, planar stress-strain relationship in each layer  is given as 

(
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The stresses are obtained by inverting the stiffness matrix, giving  

(
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Assuming linear strain distribution over the section, the stresses over the section are given by 

(
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)(𝑧) = −
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𝑧. 

The strain energy of the plate is given by 

𝑈 =
1

2
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and by substituting strains and stresses gives (in Kirchhoff-Love plate theory) 

𝑈 =
1

2
∭[

𝐸1

1 − 𝜐12𝜐21
(
𝜕2𝑤

𝜕𝑥2 )

2
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𝑉

+ 4𝐺12 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

] 𝑧2𝑑𝑉. 

Due to symmetry in our case, the neutral plane is located in the mid-plane of the plate. Given that the 

distances of the layer surfaces from the mid-plane are given z0, z1, z2 and z3 and noting that the 

material properties are piecewise contantm one can write strain energy as 
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1
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3
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} 

Comparing the strain energies of the orthotropic plate and composite plate, it may be seen 

that effective stiffnesses of the composite plate are given as 

𝐷𝑥 =
1
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𝐻 = 𝐷𝑥𝑦 + 2𝐷𝑠. 

Substituting the given material properties EL, ET, GLT and νLT for each layer as well as using t 

for the thickness of a layer gives 

𝐷𝑥 =
1

12

𝑡3(26𝐸𝐿 + 𝐸𝑇)

(1 − 𝜐𝐿𝑇𝜐𝑇𝐿)
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𝐷𝑥𝑦 =
9

8

𝑡3(𝜐𝑇𝐿𝐸𝐿 + 𝜐𝐿𝑇𝐸𝑇)

(1 − 𝜐𝐿𝑇𝜐𝑇𝐿)
 

𝐷𝑦 =
1

12

𝑡3(𝐸𝐿 + 26𝐸𝑇)

(1 − 𝜐𝐿𝑇𝜐𝑇𝐿)
 

𝐷𝑠 =
9

4
𝑡3𝐺𝐿𝑇 

Deflection of simply supported uniformly loaded plate is obtained from [] 

𝑤 =
16𝑝0

𝜋6
∑ ∑

sin
𝑚𝜋𝑥
𝑎 sin

𝑛𝜋𝑦
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∞

𝑛=1,3,…

∞

𝑚=1,3,…

, 

where a is the span in x-direction, b is the span in y-direction and p0 is the unifrom load on 

the plate.  

Calculating the deflection in the mid-span taking into account 3x3 terms gives 

wmax = 5.07 mm, which is equal to deflection obtained from the Abaqus model without the 

shear deformations (case b).  

Equal deflection confirms that used Abaqus model is reliable in the case where transverse 

shear deformations are neglected. The stresses can be simply derived from 

(
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)(𝑧) = −
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𝑧. 

where the curvature are obtained by differentation as 

𝜕2𝑤

𝜕𝑥2
= −
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∑ ∑
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∞
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, 
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=
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cos
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[𝐷𝑥 (
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∞

𝑛=1,3,…

∞

𝑚=1,3,…

. 

Finally the stresses from Abaqus and analytical model were plotten in the same figures. In the 

Figure 7 it may be seen that the stresses from the analytical model are almost equal to stresses 

obtained from the Abaqus model. In the Figure 8 stresses near the corner of the plate are 
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compared. There exists some differences between the Abaqus and analytical model. Partly 

the reason is that measuring the stresses from exact coordinate was not possible in Abaqus, 

and the stresses, which had large gradient in the region, were only approximations. Still the 

stresses in the corner are clearly comparable between the models and may be considered as 

validation of the used FE model. 

 

Figure 7. Stresses from the analytical model (squares) compared to Abaqus results (lines) on the mid-point of 

the plate. 

 

Figure 8. Stresses from the analytical model (squares) compared to Abaqus results (lines) near the corner of the 

plate. 
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