
Homework 4

CIV-E4080, Material Modeling in Civil Engineering L

Introduction and Readings

The following content is covered/ needed for doing this homework,

• Material symmetries - Degree of symmetry

• Linear Elasticity - Matrix Formulation

• Anisotropy

• Isotropy - Limits on Elasic Parameters Values

• Orthotropy

• Transversal Isotropy - Limits on Elastic Parameters Values

Problem 1 - Orthotropy

[5 points] Elastic bending of a Glue Laminated Timber (GLT) Beam

1. Explain qualitatively and quantitavely (very concisely)

(a) Why these stresses are as they are ?

(b) Why is this difference ?
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2. For a generic freely supported GL-beam and a constant distributed load, determine the elastic
deflection at the mid span for a normal temperature and hygrometry. Account for both
bending and shearing contribution for the deflection. (For material properties refer to table
given below).

Hints

• Determine an effective bending stiffness ’B’ and shear stiffness ’S’ for the composite sections
’a’ and ’b’.

• For choosing the correct shear modulus values from tables, think in which material orthotropy
plane the corresponding shear strain component occurs.
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Solution

1. Timber being an orthotropic material has different stiffnesses in different directions. Since,
GLT is composed of various layers of timber with different grain directions, this causes sudden
variation in stresses in different layers.

2. Strain energy of the beam is,

U =
1

2

∫
v

σxεx + τxyγxydV (1)

Considering the width to be constant,

U =
1

2
b

∫ l

0

∫
y

(σxεx + τxyγxy)dy.dx (2)

Where, σx = Exεx, εx = y.Kx, τxy = Gxy.γxy

U =
1

2
b

∫ l

0

[(

∫ y1

0

EL.y
2.K2

x +GTL.γ
2
xy)dy

+ (

∫ y2

y1

ET .y
2.K2

x +GLT .γ
2
xy)dy

+ (

∫ y3

y2

EL.y
2.K2

x +GTL.γ
2
xy)dy]dx (3)

U1 =
1

2
.2.b

∫ l

0

(EL.
y31
3
.K2

x + y1.GTL.γ
2
xy)dx (4)

U2 =
1

2
.2.b

∫ l

0

(ET .
(y2 − y1)

3

3
.K2

x + (y2 − y1).GLT .γ
2
xy)dx (5)

U3 =
1

2
.2.b

∫ l

0

(EL.
(y3 − y2)

3

3
.K2

x + (y3 − y2).GTL.γ
2
xy)dx (6)

Bending strain energy is,

Ub =
1

2
.

∫ l

0

2.b[(EL.
y31
3

+ ET .
(y2 − y1)

3

3
+ EL.

(y3 − y2)
3

3
].K2

xdx (7)

Similarly, shear strain energy is,

Us =
1

2
.

∫ l

0

2.b[y1.GTL + (y2 − y1).GLT + (y3 − y2).GTL]γ2xydx (8)

Strain energy of the beam in terms of bending and shear energies is of the form,

U = Ub + Us =
1

2

∫ l

0

EI.K2
xdx+

∫ l

0

GA.γ2xydx (9)

Hence, the effective stiffnesses are,

EI = 2.b[EL.
y31
3

+ ET .
(y2 − y1)

3

3
+ EL.

(y3 − y2)
3

3
] (10)
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GA = 2.b[y1.GTL + (y2 − y1).GLT + (y3 − y2).GTL] (11)

Deflection of a simply supported Timoshenko beam is,

u(x) =
q

24.EI
.(x4 − 2.l.x3 + l3.x) +

q

2.GA
.((l.x) − x2)) (12)

Therefore, deflection at the mid-span becomes,

u(l/2) =
5.q.l4

384.EI
+

q.l2

8.GA
(13)
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Problem 2 - Linear Isotropy in 3D elasticity

[5 points] Using Voigt’s notation,

1. Write explicitly the stress-strain relation σ = λTr(ε)1 + 2µε in the matric form σ = Dε using
the elasticity constants E, v instead of Lamė elastic constants.
What would be the expression, in matrix form, of the strain energy in terms of strains only?
What, not trivial result can you conclude for the material stiffness matrix ’D’ from the sign
of strain strain energy ?

2. Determine explicitly, from answer of ’1’, the three dimension compliance matrix (σij = λεkkδij + 2µεij)
for an isotropic linear elastic material.

Bonus: What is the physical meaning of material isotropy ? [1 point]

Solution

1. 
ε11
ε22
ε33
2ε23
2ε13
2ε12

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)




σ11
σ22
σ33
σ23
σ13
σ12

 (14)

Invert and compare with:
σ11
σ22
σ33
σ23
σ13
σ12

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




σ11
σ22
σ33
σ23
σ13
σ12

 (15)

and conclude that:

λ =
Eν

(1 + ν)(1 − 2ν)
(16)

µ = G =
E

2(1 + ν)
(17)

2.
ε = C−1σ (18)

Hence,

C =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

 (19)
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Problem 3 - Orthotropic Elasticity in Plane

[5 points] Consider a two-dimensional orthotropic material in plane stress state.

1. Determine the constitutive relation ε = f(σ) in matrix form for 2-D plane stress. The coeffi-
cient matrix is the compliance matrix C.

2. Invert the compliance matrix and deduce the stress strain relation in matrix form. (D = ?)

3. Derive the reciprocal relations between Poisson’s coefficients vij and elastic modulus Ei .

Hint: From which ’basic property’ are the reciprocity relations derived ?
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Solution

1.  ε11
ε22
2ε12

 =

 1/E1 −ν21/E2 0
−ν21/E2 1/E2 0

0 0 1/G12

 σ11
σ22
σ12

 (20)

2. Using the matrix rule (with A and B both square matrices):[
A 0
0 B

]−1
=

[
A−1 0

0 B−1

]
(21)

Hence, herein:[
1/E1 −ν/E2

−ν/E2 1/E2

]−1
=

E1E2

(1 − ν12ν21)

[
1/E2 −ν/E2

−ν/E2 1/E1

]
=

1

(1 − ν12ν21)

[
E1 ν21E1

ν12E2 E2

]
(22)

Therefore:  σ11
σ22
σ12

 =

 E1/(1 − ν12ν21) ν21E1/(1 − ν12ν21) 0
ν12E2/(1 − ν12ν21) E2/(1 − ν12ν21) 0

0 0 G12

 (23)

σ11 =
E1

(1 − ν12ν21)
(ε11 + ν21ε22) (24)

σ22 =
E2

(1 − ν12ν21)
(ν12ε11 + ε22) (25)

σ12 = G12(2ε12) (26)

3. Reciprocal relations can be derived from the fact that the compliance matrix is symmetrical.
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Problem 4 - Isotropy in 3D elasticity

[5 points] Consider a thin-walled cylindrical pressure vessel. The wall is very thin, t << R, (t/R <
1/10) as compared to the other dimensions as the radius, and consequently you may assume that
the stresses are uniform across the wall thickness ’t’. Here we have t = 2mm and D = 2R = 50mm.
The internal (over-) pressure p > 0 is uniform. In addition to the gauge pressure ’p’ a torque
moment ′M ′

t is applied at the ends of the vessel cylinder.
Two strain gauges mutually perpendicular are perfectly glues on the external surface of the cylinder
(as shown in figure). The measure strains are, ε45 = 50µm/m and ε−45 = −20µm/m
The material is steel and considered isotropic and linear elastic since the stress state is such that
no plastic flow occurs.

Determine the torque moment ′Mt’ and the pressure ’p’.

Hint: Since the geometry and loading is cylindrically symmetric, the stresses are independent
of the angular coordinate of the cylindrically coordinate system.
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Solution

Material properties are,

E = 210GPa, ν = 0.3, G = E/2(1 + ν) = 80.77GPa

Stresses in the cylinder are,

σ11 =
1

4

pD

t
(27)

σ22 =
1

2

pD

t
(28)

τ12 =
2Mt

πtD2
(29)

The strains are,

ε45 =
1

2
ε11 +

1

2
ε22 + ε12 (30)

ε−45 =
1

2
ε11 +

1

2
ε22 − ε12 (31)

Where,

ε11 =
σ11
E

− ν
σ22
E

(32)

ε22 =
σ22
E

− ν
σ11
E

(33)

ε12 =
τ12
2G

=
ε45 − ε−45

2
= 3.5 × 10−5 (34)

The torsional moment can be calculated as,

τ12 =
2Mt

tπD2
=> Mt = G.ε12.t.π.D

2 = 0.044kN.m (35)

The pressure can be calculated as,

ε45 + ε−45 = ε11 + ε22 = (1 − ν)(σ11 + σ22)/E =
3

4
(1 − ν)

p.D

E.t
(36)

p = 4.E.t(ε45 + ε−45)/3(1 − ν) = 480kPa (37)
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Problem 5 - Laminate Plate

[5 points] Consider a laminate plate with principle material directions 1 and 2. The fibers are
aligned along direction 1. In the thickness direction of the plate we have transverse isotropy. the
thickness is 20mm. (Tehty hiilikuituvahvisteisesta epoksista).
The plate is under stress state shown in figure below,

Determine the length changes in both directions 1 and 2, and in the thickness direction.

Bonus : [5 points]
Compute the solution using FEM software.
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Solution

Reciprocal relations are,
ν21
E2

=
ν12
E1

=> ν21 =
E2

E1

ν12 (38)

Strains in the plate are,

ε1 =
σ1
E1

− ν21
σ2
E2

=
1

E1

(σ1 − ν12σ2) (39)

ε2 = −ν12
σ1
E1

+
σ2
E2

=
1

E2

(σ2 − ν12
E2

E1

σ1) (40)

ε3 = −ν13
σ1
E1

− ν23σ2
E2

= − 1

E2

(ν13
E2

E1

σ1 + ν23σ2) (41)

Change in length in 1-direction is,

ε1 × 800mm =
1

40GPa
(50MPa− 0.3 × 30MPa) × 800mm = 1.18mm (42)

Change in length in 2-direction is,

ε2 × 500mm =
1

5GPa
(30MPa− 0.3 × 5GPa

40GPa
× 50MPa) × 500mm = −3.1875mm (43)

Change in length in 3-direction is,

ε3 × 20mm = − 1

5GPa
(0.2 × 5GPa

40GPa
× 50MPa+ 0.1 × 30MPa) × 20mm = 7 × 10−3mm (44)
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Problem 6 - Hyper Elasticity

[5 points] Consider an ideal rubber in a bi-axial stress state σ1 ≡ σx and σ2 ≡ σy at a constant
temperature.

1. Starting with the expression for Helmholtz free energy, derive the constitutive law for stresses
versus stretches (extension ratio), i.e., find,

σi ≡ σi(λ1, λ2), i = 1, 2
For the ideal ruber, you can use a neo- Hokean model where the Gibbs free energy density is,

ψ = C10(I1 − 3) ≡ 1/2Eθ(I1 − 3)
With an effective elasticity coefficient Eθ

C10 = 1/2NkBθ ≡ 1/2Eθ
Account first for incompressibility (deformation occurs at constant volume) the invariant,

I1 = λ21 + λ22 + λ23
Where, λ1, λ2 and λ3 are Principle stretches

Partial answers: σ1 = Eθ(λ1 − 1
λ31λ

2
2
) , σ2 = Eθ(λ2 − 1

λ32λ
2
1
).

2. Assume that the elastic modulus is experimentally estimated as, ′Eθ ≈ 3.33 MPa’. Determine
the stresses leading to the stretches ′λ1 = 2, λ2 = 1/2′.
Model validity: By comparing with experimental results it was found that the model over-
estimates the stresses when 1.5 < λ1 < 6.
What is the quality of your results for stresses ?
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Solution

1. The stress in a particular direction in a rubber under deformation is found by taking the
partial derivative of the change in Helmholtz free energy with respect to the extension ratio
in the direction of interest.

Also, the deformation happens at constant volume. Thus,

λxλyλz = 1 => λz = 1/λxλy (45)

ψ =
1

2
Eθ(I1 − 3) = 1/2Eθ(λ

2
x + λ2y +

1

λ2xλ
2
y

− 3) (46)

Stress in x-direction is,

∂ψ

∂λx
= σx =

1

2
Eθ(2λx −

2

λ3xλ
2
y

) = Eθ(λx −
1

λ3xλ
2
y

) (47)

Stress in y-direction is,

∂ψ

∂λy
= σy =

1

2
Eθ(2λy −

2

λ3yλ
2
x

) = Eθ(λy −
1

λ3yλ
2
x

) (48)

2.

σx = 3.33(2 − 1

(2)3(1/2)2
) = 5MPa (49)

σy = 3.33(
1

2
− 1

(1/2)3(2)2
) = −5MPa (50)
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Bonus : [5 points] Compute the solution using FEM software.

14


