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"The best time to plan an experiment is after you've done it.”
- Fisher




Introduce yourself

o Who are you?
o What do you do?
o Why are you here?

o Tell something funny about your name?
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What to expect?

o Background and philosophy

o Theory

o Nomenclature

o Practical demonstrations and exercises
What not?

o Matrix algebra

o Statistical basics

o Detailed listing of possible designs
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Intended learning outcomes

After the course you will be able to:

o

o

Identify the basic principles of experimental design

Use different programs for experimental design

Recognise and use different design types

Determine a suitable regression model based on design data

Identify and apply different tools for model diagnostics
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Course contents

Five sessions

o

o

Introduction and factorial design

Factorial design and diagnostics

Central composite designs and optimization
Mixture design and miscellaneous

Practical groupwork
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Requirements

Completed assignments and exam (pass/fail):

o Participation in all the sessions
o Given assignments and group work
o Course reader

o Individual exam (return by email)
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Session 1

Introduction

o Why experimental design

Factorial design

o Design matrix

o Model equation = coefficients
o Residual

o Response contour
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Some history

Originally by Fisher within agriculture and biology

o Fisher (1925) Statistical Methods for Research Workers (14th ed. reprint 1973: Hafner Publishing
Company; New York)

o Fisher (1935) Design of Experiments (8th ed. reprint 1971: Hafner Publishing Company; New York)

o Box & Wilson (1951) On the experimental attainment of optimum conditions, J Royal Stat Soc, Ser B,
13, 1-45.

o Hill & Hunter (1966) A review of response surface methodology: a literature survey, Technometrics,
8, 571-590.
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Experimental design or RSM?

= (R e

Experimental design Response Surface Methodology (RSM)
o Planning and analysing experiments o Mathematical and statistical tools for the
o Emphasis on meaningful variation design and analysis of response surfaces

o Emphasis on optimization
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Response surfaces

If the current location is known, a
response surface provides information
on

o Where to go

o How to get there

o Local maxima/minima
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Is there a difference?
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Research problem

TP
A+B—C
o Aand B constant reagents

o C reaction product (response), to be maximized

o T and P reaction conditions (continuous factors), can be regulated
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Response as a contour plot

/\ What kind of equation could
T

describe C behaviour as a function

P of Tand P?
o C=1f(TP)
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What else do we want to know?

o Which factors and interactions are important
o Positions of local optima (if they exist)
o Direction towards an optimum P
o Surface and surface function around an
optimum

o Statistical significance

T
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How can we do it?
P The expert method
[
T
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How can we do it?

The PhD student method
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How can we do it?

The classical method

P fixed

T fixed
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How can we do it?

The "Soviet” method

o xKpossibilities with k factors
on x levels

o 2factors on 4 levels = 16

experiments
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How can we do it?

/\ The best method - factorial design
T

o AT AP

o Factor interaction (diagonal)
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Why experimental design?

o Reduce the number of experiments

— Cost, time
o Extract maximal information
o Understand what happens

o Predict future behaviour

—
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Challenges

o Multiple factors on multiple levels
o 6 factors on 3 levels, 38 experiments
— Only 2 levels

— Discard factors

o
= SCREENING /
¢ 2
[l
1
A Aalto University_
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Factorial design
3 @ °
No | T | P
1 80 | 2
P 2 120 2
3 80 | 3
4 |120] 3
2 @ Py
80 T 120
A' Is‘zlhtgt:‘ll’:)ifvgas:nzical 25.3.2019
B Technology 23

Factorial design
In coded levels:
1@ ®
N:o T [Tcoded| P P coded
1 80 -1 2 -1
P 2 | 120 1 2 -1
3 80 -1 3 1
4 120 1 3 1
1@ °
-1 T 1 The smallest possible full factorial design!
A Aalto University_
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Factorial design

10 ®
45 75
P
25 35
-1@ { ]
-1 1

Design matrix:

No | T P C

1 -1 -1 25

1 -1 35

2
3 -1 1 45
4 1 1 75
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Factorial design

1@ ®
45 75
P
25 35
-l@ ®
_1 1

Average T effect:

[ _75+35 45425
== =

Average P effect:

p_75+45 35+25
— =

Interaction (TxP) effect:

75+25 45+ 35
TXP = "> =10
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Research problem

T,P,K
A+B—C
o Aand B constant reagents

o C reaction product (response), to be maximized

o T, Pand K reaction conditions (continuous factors) at two different levels
o Number of experiments 23 = 8 ([levels]factors])

How to select proper factor levels?
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Factorial design

First step K
o Selection and coding of factor levels 0.5 /
3 :

— Design matrix :
T =180, 120

[80, 120] 5 |
P=[2 3] S
K = [0.5, 1] /

2@
80 T 120

AI School of Chemical 2532019
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Factorial design

N:o| Order | T P K
1 1] - -1 Factorial design matrix
2 1] - il o Notice symmetry in diffent colums
3 -1 1 -1
2 y y y o Inner product of two colums is zero
5 y ] 1 o Eg.TP=0
6 1 y 1 — Orthogonality
7 -1 1 1
8 1 1 1
Randomize!
Aalto University
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Orthogonality

For a first-order orthogonal design, X’X is a diagonal matrix

-1 -1
x| 1 1| xo -1 1 -1
-1 1 -1 -1 1 1
11
-1 -1
xx<| -l 1 -1 1| 1 1| |40
[ T T | 0 4
11

If two columns are orthogonal, variable effects can be estimated independently
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Factorial design

z
o

—
]
A
O

11 A 60

1 -1 -1 72

-1 1 -1 54

1 1 -1 68

O |IN[O|O [ ]|WIN|[—~|Z
1
-
1
-

1 52

1 -1 1 83

-1 1 1 45
1 1 1 80

1_45 80
_1.ﬂ
1 |
54 68
52 83
1490 72 /
-1 1
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Empirical model
y.=f(T,P,K)+¢
Y=L+ Bx + X, +.+ fX, +E
N 1 X X Xy b() e
y=Xb+e — Yoof_| b X X Kok b, +H @
: 1o : :
Yn 1 X X X bk e,
Measure Choose Unknown! How to solve b?
A Aalto University
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Least-squares regression

Minimize difference between measured and predicted values
y=Xb+e

—e=y-y=y-Xb

Cannot minimize a vector, minize the sum of squares (a scalar)
de'e
db
—=b=(XX)"'X"y

=..=-2X"y+2X'Xb=0

— Least-squares estimate of b
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Linearity

Some confusion about multiple linear regression and linearity

o Linear in coefficients or variables?

Yi = bo +bix; + &

o Linear in both coefficients and variables

y; = by + byx; + byx? + &

o Linear in coefficients (with a fixed x, y a linear function of bo, b7 and by)
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Factorial design

z
o

—
T
P
O

1] -1 -1 60
11111 72
-1 111 54
1 111 68

O|IN|[OD|aA|D|WIN|[~
1
-
1
-

1 52
11111 83
-1 1 1 45
1 1 1 80

Model equation, main terms:
Y = By + Bix, + Box, +.+ Bix, +¢,

where

yi denotes a response

xi a factor or a variable (T, P or K)
Bi a coefficient

& a residual

Bo the mean term (average level)
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Factorial design

Model equation = coefficients

bo| [ a2
po| &l s
b, -2.5
b, 0.8

o bg average value (mean term)
o Large coefficient — important factor

o Interactions usually present

Due to coding, the coefficients are comparable!
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Factorial design

N:o T P K TxP | TxK | PxK | TxKxP C

1 -1 -1 -1 1 -1 60

2 1 -1 -1 -1 1 72

3 -1 1 -1 1 1 54

4 1 1 -1 -1 -1 68

5 -1 -1 1 -1 1 52

6 1 -1 1 1 -1 83

7 -1 1 1 -1 -1 45

8 1 1 1 1 1 80
A School of Chemical 2532019
B Technology 37

Factorial design

\
AN

TxP TxK PxK
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Factorial design

Model equation = coefficients

bo 1 643
by 115
b, -2.5
bs 0.8
b=1y, 17| 08
bys 5.0
b,s 0
by,,) 1025

o Large interaction b1z (TxK)

o Important interaction, main effects cannot be

removed

— Which coefficients to include?

Aalto University
School of Chemical 25.3.2019
B Technology 39

Factorial design

An estimate of standard error needed 3 /
o Replicates

o Model residual

A~
e=y-Xb=y-y
55
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Factorial design

Error estimation allows significant testing

Remove insignificant coefficients
o Leave main effects
o Important interaction, main effect cannot be

removed
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Factorial design

Error estimation allows significant testing 14

Remove insignificant coefficients
o Leave main effects
o Important interaction, main effect cannot be

removed

Recalculate upon removal!
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Factorial design

Model residuals

o Finding outliers

o If normally distributed

— Random error

Several ways to present residuals

o Can a suggest response transformation

Normal probability (%)

100

90

80

70

B0

50

40

30

20

L

0
Residual
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Factorial design

R? statistic
o Explained variation in measured response

R? =0.996

o 99.6% explained

Predicted

85

80

65
Observed

70
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Factorial design

More things to look at

o Normal distribution of coefficients

°

o Residuals

Standardized residual
*
*

o ANOVA

45 50 55 60 65 70 75 80 85
Predicted response

' Aalto University
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Factorial design

For three factors, 2D contours require one

constant factor
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Factorial design

Prediction
T=110

P =2 (min. level)
K=0.9

Coded location

xm=1[1 0.5 -1 0.6 0.3]
Predicted response
Ym=74.5
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Session 1

Introduction

o Why experimental design

Factorial design

o Design matrix

o Model equation = coefficients
o Residual

o Response contour
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Nomenclature

Factorial design
Screening

Design matrix

Model equation
Response

Effect (main/interaction)
Coefficient

Significance

Residual

Contour
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