
3/25/19

1

Design of experiments
Mikko Mäkelä

Aalto University, School of Chemical Engineering
Department of Bioproducts and Biosystems
Espoo, Finland

”Thebesttimeto planan experimentis afteryou’vedoneit.”
- Fisher
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Introduce yourself
o Who are you?

o What do you do?

o Why are you here?

o Tell something funny about your name?
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What to expect?
o Background and philosophy

o Theory

o Nomenclature

o Practical demonstrations and exercises

What not?

o Matrix algebra

o Statistical basics

o Detailed listing of possible designs

25.3.2019
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Intended learning outcomes

After the course you will be able to:

o Identify the basic principles of experimental design

o Use different programs for experimental design

o Recognise and use different design types

o Determine a suitable regression model based on design data

o Identify and apply different tools for model diagnostics
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Course contents
Five sessions

o Introduction and factorial design

o Factorial design and diagnostics

o Central composite designs and optimization

o Mixture design and miscellaneous

o Practical groupwork

25.3.2019
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Requirements
Completed assignments and exam (pass/fail):

o Participation in all the sessions

o Given assignments and group work

o Course reader

o Individual exam (return by email)
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Session 1
Introduction

o Why experimental design

Factorial design

o Design matrix

o Model equation = coefficients

o Residual

o Response contour
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Some history
Originally by Fisher within agriculture and biology

o Fisher (1925) Statistical Methods for Research Workers (14th ed. reprint 1973: Hafner Publishing 
Company; New York)

o Fisher (1935) Design of Experiments (8th ed. reprint 1971: Hafner Publishing Company; New York)

o Box & Wilson (1951) On the experimental attainment of optimum conditions, J Royal Stat Soc, Ser B, 

13, 1-45.

o Hill & Hunter (1966) A review of response surface methodology: a literature survey, Technometrics, 
8, 571-590.
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Experimental design or RSM?
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Design Analysis

Experimental design

o Planning and analysing experiments
o Emphasis on meaningful variation

Response Surface Methodology (RSM)

o Mathematical and statistical tools for the 
design and analysis of response surfaces

o Emphasis on optimization
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Response surfaces
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www.maanmittauslaitos.fi

If the current location is known, a 

response surface provides information 

on

o Where to go

o How to get there

o Local maxima/minima

Is there a difference?
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vs.

www.maanmittauslaitos.fi

http://www.maanmittauslaitos.fi/
http://www.maanmittauslaitos.fi/
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Research problem

A + B $,& C
o A and B constant reagents

o C reaction product (response), to be maximized

o T and P reaction conditions (continuous factors), can be regulated
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Response as a contour plot
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What kind of equation could

describe C behaviour as a function

of T and P?

o C = f(T,P) 

T

P
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What else do we want to know?
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T

P

o Which factors and interactions are important

o Positions of local optima (if they exist)

o Direction towards an optimum

o Surface and surface function around an 

optimum

o Statistical significance

How can we do it?
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The expert method

T

P
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How can we do it?
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The PhD student method

T

P

How can we do it?
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T fixed

The classical method

P fixed
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How can we do it?
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The ”Soviet” method

o xk possibilities with k factors

on x levels

o 2 factors on 4 levels = 16 

experiments

T

P

How can we do it?
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The best method - factorial design

o ΔT, ΔP

o Factor interaction (diagonal)

T

P
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Why experimental design?
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T

P

o Reduce the number of experiments

→  Cost, time

o Extract maximal information

o Understand what happens

o Predict future behaviour

Challenges

o Multiple factors on multiple levels

o 6 factors on 3 levels, 36 experiments

→ Only 2 levels

→ Discard factors

= SCREENING

25.3.2019
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2
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Factorial design
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N:o T P

1 80 2

2 120 2

3 80 3

4 120 3

T

P

2

3

12080

Factorial design
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T

P

1-1
-1

1 In coded levels:

The smallest possible full factorial design!

N:o T T coded P P coded

1 80 -1 2 -1

2 120 1 2 -1

3 80 -1 3 1

4 120 1 3 1
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Factorial design
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T

P

25 35

45 75

1-1
-1

1 Design matrix:

N:o T P C

1 -1 -1 25

2 1 -1 35

3 -1 1 45

4 1 1 75

Factorial design
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T

P

25 35

45 75

1-1
-1

1

Average T effect:

T = 75 + 35
2 − 45 + 252 = 20

Average P effect:

P = 75 + 45
2 − 35 + 252 = 30

Interaction (TxP) effect:

T×P = 75 + 25
2 − 45 + 352 = 10
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Research problem

A + B $,&,' C
o A and B constant reagents

o C reaction product (response), to be maximized

o T, P and K reaction conditions (continuous factors) at two different levels

o Number of experiments 23 = 8 ([levels][factors]) 

How to select proper factor levels?
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Factorial design

First step

o Selection and coding of factor levels

→ Design matrix

T = [80, 120]

P = [2, 3]

K = [0.5, 1]

25.3.2019
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0.5

2
80 120

3

1

P

T

K
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Factorial design
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Factorial design matrix

o Notice symmetry in diffent colums

o Inner product of two colums is zero

o E.g. T’P = 0

→ Orthogonality

N:o Order T P K
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

Randomize!

Orthogonality
For a first-order orthogonal design, X’X is a diagonal matrix

If two columns are orthogonal, variable effects can be estimated independently
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Factorial design
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N:o T P K C
1 -1 -1 -1 60
2 1 -1 -1 72
3 -1 1 -1 54
4 1 1 -1 68
5 -1 -1 1 52
6 1 -1 1 83
7 -1 1 1 45
8 1 1 1 80

-1

-1
-1 1

1

1

60 72

52 83

6854

45 80

Empirical model
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Measure Choose Unknown! How to solve b?

yc = f(T, P, K) + ε

y = β0 +β1x1 +β2x2 +...+βk xk +ε

y = Xb + e →  

y1

y2
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Least-squares regression

Minimize difference between measured and predicted values

Cannot minimize a vector, minize the sum of squares (a scalar)

→ Least-squares estimate of b
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y =Xb+ e
→ e = y− ŷ = y -Xb

∂e'e
∂b

= ... = -2X'y+ 2X'Xb = 0

→ b = (X'X)-1X'y

Linearity

Some confusion about multiple linear regression and linearity

o Linear in coefficients or variables?

!" = $% + $'(" + )"
o Linear in both coefficients and variables

!" = $% + $'(" + $*("* + )"
o Linear in coefficients (with a fixed x, y a linear function of b0, b1 and b2)

25.3.2019
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Factorial design
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Model equation, main terms:

where

yi denotes a response

xi a factor or a variable (T, P or K)

βi a coefficient

εi a residual

β0 the mean term (average level)

yi  = β0 +β1x1 +β2x2 +...+βk xk +εi

N:o T P K C

1 -1 -1 -1 60

2 1 -1 -1 72

3 -1 1 -1 54

4 1 1 -1 68

5 -1 -1 1 52

6 1 -1 1 83

7 -1 1 1 45

8 1 1 1 80

Factorial design
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Model equation = coefficients

o b0 average value (mean term)

o Large coefficient → important factor

o Interactions usually present

Due to coding, the coefficients are comparable!

b = 
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Factorial design
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N:o T P K TxP TxK PxK TxKxP C
1 -1 -1 -1 1 -1 60
2 1 -1 -1 -1 1 72
3 -1 1 -1 1 1 54
4 1 1 -1 -1 -1 68
5 -1 -1 1 -1 1 52
6 1 -1 1 1 -1 83
7 -1 1 1 -1 -1 45
8 1 1 1 1 1 80

Factorial design
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Factorial design
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Model equation = coefficients

o Large interaction b13 (TxK)

o Important interaction, main effects cannot be 

removed

→ Which coefficients to include?
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Factorial design
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An estimate of standard error needed

o Replicates

o Model residual
ei

yi

ŷi
e = y - Xb = y - ŷ
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Factorial design
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Error estimation allows significant testing

Remove insignificant coefficients

o Leave main effects

o Important interaction, main effect cannot be 

removed

Factorial design
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Error estimation allows significant testing

Remove insignificant coefficients

o Leave main effects

o Important interaction, main effect cannot be 

removed

Recalculate upon removal!
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Factorial design
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Model residuals

o Finding outliers

o If normally distributed

→  Random error

Several ways to present residuals

o Can a suggest response transformation

Factorial design
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R2 statistic

o Explained variation in measured response

R2 = 0.996

o 99.6% explained
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Factorial design
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More things to look at

o Normal distribution of coefficients

o Residuals

o ANOVA

Factorial design
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For three factors, 2D contours require one

constant factor
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Factorial design
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Prediction

T = 110

P = 2 (min. level)

K = 0.9

Coded location

xm = [1  0.5  -1  0.6  0.3]

Predicted response

ym = 74.5

Session 1
Introduction

o Why experimental design

Factorial design

o Design matrix

o Model equation = coefficients

o Residual

o Response contour
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Nomenclature
Factorial design
Screening
Design matrix
Model equation
Response
Effect (main/interaction)
Coefficient
Significance
Residual
Contour
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Thank you!
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