Aalto University
School of Chemical
Technology

Design of experiments

Mikko Mäkelä

Aalto University, School of Chemical Engineering
Department of Bioproducts and Biosystems
Espoo, Finland

A!
Aalto University
School of Chemical
Technology
"The best time to plan an experiment is after you've done it",

- Fisher

Introduce yourself

- Who are you?
- What do you do?
- Why are you here?
- Tell something funny about your name?

What to expect?

- Background and philosophy
- Theory
- Nomenclature
- Practical demonstrations and exercises

What not?

- Matrix algebra
- Statistical basics
- Detailed listing of possible designs

A Aalto University
Technology

Intended learning outcomes

After the course you will be able to:

- Identify the basic principles of experimental design
- Use different programs for experimental design
- Recognise and use different design types
- Determine a suitable regression model based on design data
- Identify and apply different tools for model diagnostics

Course contents

Five sessions

- Introduction and factorial design
- Factorial design and diagnostics
- Central composite designs and optimization
- Mixture design and miscellaneous
- Practical groupwork

Requirements

Completed assignments and exam (pass/fail):

- Participation in all the sessions
- Given assignments and group work
- Course reader
- Individual exam (return by email)

Session 1

Introduction

- Why experimental design

Factorial design

- Design matrix
- Model equation $=$ coefficients
- Residual
- Response contour

A Aalto University $\begin{aligned} & \text { School of Chemical }\end{aligned}$
Technology

Some history

Originally by Fisher within agriculture and biology

- Fisher (1925) Statistical Methods for Research Workers (14th ed. reprint 1973: Hafner Publishing Company; New York)
- Fisher (1935) Design of Experiments (8th ed. reprint 1971: Hafner Publishing Company; New York)
- Box \& Wilson (1951) On the experimental attainment of optimum conditions, JRoyal Stat Soc, Ser B,

13, 1-45.

- Hill \& Hunter (1966) A review of response surface methodology: a literature survey, Technometrics, 8, 571-590.

Experimental design or RSM?

A Aalto University $\begin{aligned} & \text { School of Chemical }\end{aligned}$
Technology
Technology

Response surfaces

If the current location is known, a response surface provides information on

- Where to go
- How to get there
- Local maxima/minima

Is there a difference?

A!
Aalto University
School of Chemical
Technology

Research problem

$\mathrm{A}+\mathrm{B} \xrightarrow{\mathrm{T}, \mathrm{P}} \mathrm{C}$

- A and B constant reagents
- C reaction product (response), to be maximized
- Tand P reaction conditions (continuous factors), can be regulated

Response as a contour plot

Δ Aalto University
Technology

What else do we want to know?

- Which factors and interactions are important
- Positions of local optima (if they exist)
- Direction towards an optimum
- Surface and surface function around an optimum
- Statistical significance

How can we do it?

How can we do it?

How can we do it?

The classical method

T fixed
A!
Aalto University
School of Chemical
Technology

How can we do it?

The "Soviet" method

- x^{k} possibilities with k factors on x levels
- 2 factors on 4 levels $=16$
experiments

How can we do it?

The best method - factorial design

- $\Delta T, \Delta P$
- Factor interaction (diagonal)
Δ Aalto University
Technology

Why experimental design?

- Reduce the number of experiments
\rightarrow Cost, time
- Extract maximal information
- Understand what happens
- Predict future behaviour

Challenges

- Multiple factors on multiple levels
- 6 factors on 3 levels, 3^{6} experiments
\rightarrow Only 2 levels
\rightarrow Discard factors
= SCREENING

A Aalto University $\begin{aligned} & \text { School of Chemical }\end{aligned}$
Technology

Factorial design

$\mathrm{N}: \mathrm{O}$	T	P
1	80	2
2	120	2
3	80	3
4	120	3

Aalto University
School of Chemical
Technology

Factorial design

In coded levels:

$\mathrm{N}: \mathrm{o}$	T	T coded	P	P coded
1	80	-1	2	-1
2	120	1	2	-1
3	80	-1	3	1
4	120	1	3	1

The smallest possible full factorial design!

Factorial design

Design matrix:

$\mathrm{N}: \mathrm{o}$	T	P	C
1	-1	-1	25
2	1	-1	35
3	-1	1	45
4	1	1	75

Factorial design

Average T effect:
$\mathrm{T}=\frac{75+35}{2}-\frac{45+25}{2}=20$
Average P effect:
$P=\frac{75+45}{2}-\frac{35+25}{2}=30$
Interaction (TxP) effect:
$T \times P=\frac{75+25}{2}-\frac{45+35}{2}=10$

Research problem

$A+B \xrightarrow{T, P, K} C$

- A and B constant reagents
- C reaction product (response), to be maximized
- T, P and K reaction conditions (continuous factors) at two different levels
- Number of experiments $2^{3}=8$ ([levels] $\left.{ }^{[\text {factors }]}\right)$

How to select proper factor levels?

Factorial design

First step

- Selection and coding of factor levels
\rightarrow Design matrix
$T=[80,120]$
$\mathrm{P}=[2,3]$
$K=[0.5,1]$

A!

Factorial design

$\mathrm{N}: \mathrm{o}$	Order	T	P	K
1		-1	-1	-1
2		1	-1	-1
3		-1	1	-1
4		1	1	-1
5		-1	-1	1
6		1	-1	1
7		-1	1	1
8		1	1	1

Randomize!

Factorial design matrix

- Notice symmetry in diffent colums
- Inner product of two colums is zero
- E.g. T'P = 0
\rightarrow Orthogonality

Aalto University

Orthogonality

For a first-order orthogonal design, $\mathrm{X}^{\prime} \mathrm{X}$ is a diagonal matrix
$\mathbf{X}=\left[\begin{array}{cc}-1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 1\end{array}\right], \mathbf{X}^{\prime}=\left[\begin{array}{cccc}-1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right]$
$\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}-1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right]\left[\begin{array}{cc}-1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
If two columns are orthogonal, variable effects can be estimated independently

A Aalto University $\begin{aligned} & \text { School of Chemical }\end{aligned}$
Technology

Factorial design

$\mathrm{N}: \mathrm{o}$	T	P	K	C
1	-1	-1	-1	60
2	1	-1	-1	72
3	-1	1	-1	54
4	1	1	-1	68
5	-1	-1	1	52
6	1	-1	1	83
7	-1	1	1	45
8	1	1	1	80

Empirical model

$$
\mathrm{y}_{\mathrm{c}}=\mathrm{f}(\mathrm{~T}, \mathrm{P}, \mathrm{~K})+\varepsilon
$$

$\mathrm{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+\varepsilon$
$\mathbf{y}=\mathbf{X b}+\mathbf{e} \rightarrow\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]\left[\begin{array}{c}b_{0} \\ b_{1} \\ \vdots \\ b_{k}\end{array}\right]+\left[\begin{array}{c}e_{1} \\ e_{2} \\ \vdots \\ e_{n}\end{array}\right]$

Measure
Choose

Unknown! How to solve b?
A!

Least-squares regression

Minimize difference between measured and predicted values
$\mathbf{y}=\mathbf{X b}+\mathbf{e}$
$\rightarrow e=y-\hat{y}=y-X b$
Cannot minimize a vector, minize the sum of squares (a scalar)
$\frac{\partial \mathbf{e}^{\prime} \mathbf{e}}{\partial \mathbf{b}}=\ldots=-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X b}=0$
$\rightarrow \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$
\rightarrow Least-squares estimate of \mathbf{b}

Linearity

Some confusion about multiple linear regression and linearity

- Linear in coefficients or variables?
$y_{i}=b_{0}+b_{1} x_{i}+\varepsilon_{i}$
- Linear in both coefficients and variables
$y_{i}=b_{0}+b_{1} x_{i}+b_{2} x_{i}^{2}+\varepsilon_{i}$
- Linear in coefficients (with a fixed x, y a linear function of b_{0}, b_{1} and b_{2})

A Aalto University
Technology

Factorial design

$\mathrm{N}: \mathrm{o}$	T	P	K	C
1	-1	-1	-1	60
2	1	-1	-1	72
3	-1	1	-1	54
4	1	1	-1	68
5	-1	-1	1	52
6	1	-1	1	83
7	-1	1	1	45
8	1	1	1	80

Model equation, main terms:
$y_{i}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+\varepsilon_{i}$
where
y_{i} denotes a response
x_{i} a factor or a variable (T, P or K)
β_{i} a coefficient
ε_{i} a residual
β_{0} the mean term (average level)

Factorial design

Model equation = coefficients
$\mathrm{b}=\left[\begin{array}{l}b_{0} \\ b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{c}64.2 \\ 11.5 \\ -2.5 \\ 0.8\end{array}\right]$

- b_{0} average value (mean term)
- Large coefficient \rightarrow important factor
- Interactions usually present

Due to coding, the coefficients are comparable!
A!
Aalto University
School of Chemical
Technology

Factorial design

$\mathrm{N}: \mathrm{o}$	T	P	K	TxP	TxK	PxK	TxKxP	C
1	-1	-1	-1		1		-1	60
2	1	-1	-1		-1		1	72
3	-1	1	-1		1		1	54
4	1	1	-1		-1		-1	68
5	-1	-1	1		-1		1	52
6	1	-1	1		1		-1	83
7	-1	1	1		-1		-1	45
8	1	1	1		1		1	80

Factorial design

T

PxK

Factorial design

Model equation = coefficients
$\mathbf{b}=\left[\begin{array}{c}\mathrm{b}_{0} \\ \mathrm{~b}_{1} \\ \mathrm{~b}_{2} \\ \mathrm{~b}_{3} \\ \mathrm{~b}_{12} \\ \mathrm{~b}_{13} \\ \mathrm{~b}_{23} \\ \mathrm{~b}_{123}\end{array}\right]=\left[\begin{array}{c}64.3 \\ 11.5 \\ -2.5 \\ 0.8 \\ 0.8 \\ 5.0 \\ 0 \\ 0.25\end{array}\right]$

- Large interaction b_{13} (TxK)
- Important interaction, main effects cannot be
 removed
\rightarrow Which coefficients to include?

Factorial design

An estimate of standard error needed

- Replicates
- Model residual
$\mathbf{e}=\mathbf{y}-\mathbf{X b}=\mathbf{y}-\hat{\mathbf{y}}$

Factorial design

Error estimation allows significant testing

Remove insignificant coefficients

- Leave main effects
- Important interaction, main effect cannot be removed

Factorial design

Error estimation allows significant testing

Remove insignificant coefficients

- Leave main effects
- Important interaction, main effect cannot be removed

Recalculate upon removal!
$\Delta \begin{aligned} & \text { Aalto University } \\ & \text { School of Chemica }\end{aligned}$
Technology

Factorial design

Model residuals

- Finding outliers
- If normally distributed
\rightarrow Random error
Several ways to present residuals
- Can a suggest response transformation

Factorial design

R^{2} statistic

- Explained variation in measured response
$R^{2}=0.996$
- 99.6% explained

$\Delta \begin{aligned} & \text { Aalto University } \\ & \text { School of Chemical }\end{aligned}$
Technology

Factorial design

More things to look at

- Normal distribution of coefficients
- Residuals
- ANOVA

Factorial design

For three factors, 2D contours require one constant factor

Factorial design

Prediction
$\mathrm{T}=110$
$P=2$ (min. level)
$K=0.9$
Coded location
$\mathbf{x}_{\mathbf{m}}=\left[\begin{array}{lllll}1 & 0.5 & -1 & 0.6 & 0.3\end{array}\right]$
Predicted response
$y_{m}=74.5$

Session 1

Introduction

- Why experimental design

Factorial design

- Design matrix
- Model equation $=$ coefficients
- Residual
- Response contour

Nomenclature

Factorial design

Screening
Design matrix
Model equation
Response
Effect (main/interaction)
Coefficient
Significance
Residual
Contour

Thank you!

