

Design of experiments

Mikko Mäkelä

Aalto University, School of Chemical Engineering Department of Bioproducts and Biosystems Espoo, Finland

"The best time to plan an experiment is after you've done it." - Fisher

Л

Intended learning outcomes After the course you will be able to: Identify the basic principles of experimental design 0 Use different programs for experimental design 0 Recognise and use different design types 0 Determine a suitable regression model based on design data 0 Identify and apply different tools for model diagnostics 0 Aalto University School of Chemical Δ 25.3.2019 Technology

Course contents

Five sessions

- o Introduction and factorial design
- Factorial design and diagnostics
- o Central composite designs and optimization
- o Mixture design and miscellaneous
- o Practical groupwork

25.3.2019 6

25.3.2019 7

Factorial design

N:o	Order	Т	Р	К		
1		-1	-1	-1		
2		1	-1	-1		
3		-1	1	-1		
4		1	1	-1		
5		-1	-1	1		
6		1	-1	1		
7		-1	1	1		
8		1	1	1		
Randomize!						

Factorial design matrix

• Notice symmetry in diffent colums

- Inner product of two colums is zero
- E.g. **T'P** = 0
- \rightarrow Orthogonality

Aalto University School of Chemical Technology

Orthogonality

For a first-order orthogonal design, X'X is a diagonal matrix

If two columns are orthogonal, variable effects can be estimated independently

Aalto University School of Chemical Technology

25.3.2019 30

25.3.2019 29

Factorial design

N:o	Т	Р	К	С
1	-1	-1	-1	60
2	1	-1	-1	72
3	-1	1	-1	54
4	1	1	-1	68
5	-1	-1	1	52
6	1	-1	1	83
7	-1	1	1	45
8	1	1	1	80

Model equation, main terms:

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon_k$$

where y_i denotes a response x_i a factor or a variable (T, P or K) β_i a coefficient ϵ_i a residual β_0 the mean term (average level)

> 25.3.2019 35

Aalto University School of Chemica Technology

Factorial design N:o Т Ρ Κ ΤxΡ TxK PxK TxKxP С -1 -1 -1 1 -1 60 1 2 1 -1 -1 -1 1 72 3 -1 1 -1 1 1 54 1 1 -1 -1 4 -1 68 -1 -1 1 -1 1 5 52 1 1 1 6 -1 -1 83 7 -1 1 1 -1 -1 45 1 1 1 8 1 1 80 Aalto University School of Chemical Technology 25.3.2019 37

25.3.2019 49

Nomenclature

Factorial design Screening Design matrix Model equation Response Effect (main/interaction) Coefficient Significance Residual Contour

Aalto University School of Chemical Technology

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>